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EarSSR: Silent Speech Recognition via Earphones
Xue Sun , Jie Xiong , Chao Feng , Haoyu Li , Yuli Wu , Dingyi Fang , and Xiaojiang Chen

Abstract—As the most natural and convenient way to com-
municate with people, speech is always preferred in Human-
Computer Interactions. However, voice-based interaction still has
several limitations. It raises privacy concerns in some circum-
stances and the accuracy severely degrades in noisy environments.
To address these limitations, silent speech recognition (SSR) has
been proposed, which leverages the inaudible information (e.g.,
lip movements and throat vibration) to recognize the speech. In
this paper, we present EarSSR, an earphone-based silent speech
recognition system to enable interaction without a need of vocal-
ization. The key insight is that when people are speaking, their
ear canals exhibit unique deformation patterns and the corre-
sponding deformation patterns are related to words/letters even
without any vocalization. We utilize the built-in microphone and
speaker of an earphone to capture the ear canal deformation.
Ultrasound signals are emitted and the reflected signals are ana-
lyzed to extract the signal features corresponding to speech-induced
ear canal deformation for silent speech recognition. We design a
two-channel hierarchical convolutional neural network to achieve
fine-grained letter/word recognition. Our extensive experiments
show that EarSSR can achieve an accuracy of 82% for single
alphabetic letter recognition and an accuracy of 93% for word
recognition.

Index Terms—Acoustic sensing, silent speech recognition,
earphone.

Manuscript received 15 December 2022; revised 8 December 2023; accepted
28 December 2023. Date of publication 22 January 2024; date of current version
2 July 2024. This work was supported in part by NSFC A3 Foresight Program
under Grant 62061146001, in part by the National Natural Science Foundation
of China under Grant 62272388 and Grant 62372372, and in part by the Key
Project of Shaanxi Province International Science and Technology Cooperation
Program under Grant 2023-GHZD-04 and Grant 2023-GHZD-06, and in part
by the Shaanxi Qinchuangyuan Program under Grant QCYRCXM-2023-103.
Recommended for acceptance by K. Wu. (Corresponding author: Xiaojiang
Chen.)

This work involved human subjects or animals in its research. Approval of all
ethical and experimental procedures and protocols was granted by the Northwest
University of China.

Xue Sun, Chao Feng, Haoyu Li, and Yuli Wu are with the Shaanxi In-
ternational Joint Research Centre for the Battery-Free Internet of Things,
School of Information Science and Technology, Northwest University, Xi’an
710127, China (e-mail: sunxue@stumail.nwu.edu.cn; chaofeng@nwu.edu.cn;
lihaoyu@stumail.nwu.edu.cn; wuyuli@stumail.nwu.edu.cn).

Jie Xiong is with the Microsoft Research Asia, Shanghai 200000, China.
Dingyi Fang is with the Xi’an Key Laboratory of Advanced Computing and

System Security, School of Information Science and Technology, Northwest
University, Xi’an 710127, China (e-mail: dyf@nwu.edu.cn).

Xiaojiang Chen is with the Xi’an Key Laboratory of Advanced Computing
and System Security, School of Information Science and Technology, Northwest
University, Xi’an 710127, China, also with the School of Information Science
and Technology, Northwest University, Xi’an 710127, China, and also with the
Xi’an Advanced Battery-Free Sensing and Computing Technology International
Science and Technology Cooperation Base, Xi’an 710127, China (e-mail:
jxiong@cs.umass.edu).

Digital Object Identifier 10.1109/TMC.2024.3356719

I. INTRODUCTION

S PEECH interaction plays an important role in our daily
lives. It is reported that the global market related to speech

and voice recognition will reach 22 billion by 2026 [1]. The
obvious advantage of speech communication is that it is the
most convenient interaction method. Compared with other
commonly-seen interaction schemes such as typing and gesture,
speech can achieve higher efficiency. According to a recent
study [2], speaking is on average four times faster than typing
on a touch screen. Also, speech interaction is not affected by
lighting conditions.

The primary carrier of speech is the human voice. However, in
some scenarios, vocalization is infeasible such as in a meeting, or
inefficient such as in a noisy environment. Silent speech recog-
nition (SSR) was therefore proposed as an alternative in these
scenarios. SSR allows the user to communicate with people or
devices in a silent manner. The user simply mouths the utterance
without actually voicing it and the speech information can still
be captured through a variety of SSR technologies. Existing
SSR technologies can mainly be classified into two categories,
i.e., contact-based and contact-free approaches. Specifically,
contact-based approaches need to attach sensors (e.g., Electroen-
cephalogram electrodes [3] or Electromyography electrodes [4],
[5]) to human body. Contact-based approaches are inconvenient
in a lot of real-world scenarios. Most contact-free approaches
employ cameras or wireless signals to capture the mouth and
vocal tract movements to infer silent speech [6], [7], [8]. For
example, EchoWhisper [7] utilizes acoustic signals transmitted
from a smartphone to extract the Doppler shift induced by
mouth movements to achieve silent speech recognition. How-
ever, while lip movements can be captured, the information
about the tongue’s movement which is also critical for rec-
ognizing silent speech can hardly be obtained. Moreover, this
method requires the smartphone to be placed in front of the
user’s mouth to make sure the signal can be reflected from
the mouth. The above limitations motivate us to propose an
alternative speech recognition system. We propose to utilize
the most popular wearable devices, i.e., earphones to achieve
silent speech recognition. The basic principle behind this is that
when a person speaks even without vocalization, his/her ear
canal gets deformed and the deformation pattern is uniquely
related to letters and words. Motivated by this idea, we present
EarSSR, which utilizes earphones to sense the deformation of
ear canal caused by silent speaking, enabling a new silent speech
recognition modality.

Specifically, as shown in Fig. 1, we employ inaudible acoustic
signals to sense the fine-grained ear canal deformation when
a person speaks without vocalization (termed silent speaking).
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Fig. 1. Conceptual illustration of EarSSR.

The acoustic signals reflected from the ear canal are captured by
the microphone1 and analyzed to obtain the deformation of ear
canal during the silent speaking process. Although promising
progress has been achieved in acoustic sensing, fine-grained ear
canal deformation sensing is still a challenging task due to the
following reasons.
� Extremely subtle deformation of ear canal: The length of

a person’s ear canal is only 2–3 cm and the cross-sectional
area of the ear canal usually does not exceed 0.7 cm2.
The ear canal deformation caused by silent speech is on
the scale of sub-millimeter level. This subtle deformation-
caused signal variation is very small and can be easily
buried in noise without being detected.

� The diversity of ear canal structure: Studies have shown
that the geometry of each individual’s ear canal is unique.
For the same speech, the reflected signals from the ear canal
could be different among users. Moreover, people may
speak at different speeds with different mouth movement
amplitudes for the same speech, leading to differences in
ear canal deformation. It is challenging to collect a large
amount of silent speech samples to train a deep learning
network for silent speech recognition.

� Non-speech induced ear canal deformation interference:
The third challenge is the interference from non-speech
induced ear canal deformation. In addition to speech,
non-speech activities such as head movements and mouth
movements also cause ear canal deformation.

� Adapt to new words: In real-world scenarios, there are new
words that our model did not learn. Training the model for
each unseen word incurs a high cost. If the trained model
can adapt to new words at a low cost, it will greatly facilitate
the applicability of silent speech recognition.

To solve the first challenge, we observe that acoustic signals
experience complex reflections when traveling inside the ear
canal. We discover that the ear canal deformations caused by
similar speeches exhibit highly consistent patterns while defor-
mations caused by different speeches are distinct. The reflections
which contain the deformation information can thus be utilized
for silent speech recognition.

To tackle the second challenge, we quantitatively model the
relationship between signal variations and the ear canal defor-
mation caused by speech. We extract the signal variation feature
during the process of speech, and apply the Continuous Wavelet
Transform (CWT) to obtain the time-frequency spectrum of

1A lot of earphones now have built-in microphone for noise cancellation
purposes.

signal in both time and frequency domains. We further design a
data augmentation scheme to expand the size of training data set,
which significantly reduces the data collection load and enriches
the data diversity (i.e., varying speech speeds and mouth move-
ment amplitudes). Then, we elaborate a two-channel hierarchical
neural network, SsrNet, to aggregate signal features to extract
the difference between speeches for speech recognition.

To deal with the third challenge, based on our analysis, we
discover that the extracted speech-induced signal variations
exhibit unique patterns compared with the non-speech (e.g., head
motions and mouth motions) interference patterns. This moti-
vates us to differentiate the speech-induced and other non-speech
induced signal variation patterns by identifying unique features
only related to speech. We then extract twelve signal features and
utilize the Support Vector Domain Description (SVDD) scheme
to find a minimum hypersphere to identify speech-induced signal
variations.

To address the issue of recognizing new words, we develop
an incremental learning method to adapt the trained network
for new words without losing the accuracy of recognizing old
words. Instead of retraining the whole network, we inherit the
parameters from the original network and fine tune the model to
achieve a high accuracy in recognizing both new words and old
words at low cost.

The main contributions of EarSSR are summarized as follows.
� We demonstrate the feasibility of using acoustic signals

collected from low-cost earphones to obtain ear canal
deformation information for silent speech recognition. The
proposed system can generalize across users, words and
environments.

� We design a two-channel hierarchical network, SSrNet, that
can effectively extract intra-modality information and fully
utilize the complementarity between multiple modalities
to achieve good performance in terms of robustness and
accuracy at the same time.

� We conduct extensive experiments with 50 volunteers to
demonstrate the effectiveness and robustness of the pro-
posed system. Experiment results show that EarSSR can
obtain an accuracy of 82% for recognizing a single alphabet
letter, and an accuracy of 93% in recognizing words and
phrases. The proposed system can still work well in the
presence of interference (e.g., when the user is walking).

The rest of this paper is organized as follows. Section II intro-
duces the related work and Section III introduces the background
knowledge. Section IV presents the system overview followed
by the detailed system design in Section V. Section VI presents
the implementation and evaluation of our system. Sections VII
and VIII discuss the limitation and conclude the paper.

II. RELATED WORK

In this section, we introduce the literature related to silent
speech recognition and wearable based sensing.

A. Silent Speech Recognition

The basic idea of SSR is to enable speech recognition using
inaudible information such as EEG [3], EMG [4], [5], mouth
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movements [6], [7], [8], [9], and vocal folds [10]. According
to the characteristics, existing SSR technologies can mainly be
classified into two categories, i.e., contact-based and contact-
free approaches.

1) Contact-Based Approaches: Contact-based approaches
recognize silent speech via attaching sensors to the target. For
example, previous works propose to obtain the cerebral cortex
activities via a brain–computer interface (BCI) to predict in-
tended speech [3], [11]. Robin et al. [12] utilize an in-mouth
magnetic bead to obtain the tongue and mouth movements for
word-level silent speech recognition. JawSense [13] uses the in-
ertial sensors built into smart earphones to detect jaw movement
caused by speaking. SottoVoce [14] utilizes ultrasonic imaging
sensors attached under the jaw to obtain the images of the jaw to
recognize silent speeches. The performance of these sensors is
highly location-dependent. Moreover, the sensors could affect
the daily activities and may cause skin irritations in long-term
use.

2) Contact-Free Approaches: Contact-free approaches ei-
ther utilize cameras to capture the images of joint movements or
leverage wireless signals to sense the movements of lips, throat
and chin caused by speaking [7], [8], [18], [19], [20], [21], [22],
[23], [24], [25], [26] to achieve silent speech recognition. For
example, SpeeChin [18] leverages a customized infrared camera
mounted on a necklace to capture the images of neck and face
to recognize silent speech. C-Face [22] designs an earphone
with two ear-mounted cameras to obtain the images of the face
to achieve silent speech recognition. However, camera-based
methods require monitoring the target’s face, which raises pri-
vacy concerns. RFTattoo [23] utilizes RF signals to achieve silent
speech recognition, but it requires attaching RFID tags to the
target’s face. WiHear [24] exploits Wi-Fi signals to perceive
the mouth movement-induced changes on the Channel State
Information (CSI) to recognize speech. WaveEar [25] employs
millimeter waves to sense the vibration of vocal cord when
people speak to enhance recognition of speech in noisy envi-
ronments. EchoWhisper [7] utilizes acoustic signals transmitted
from smartphones to extract the Doppler shift induced by mouth
movements to achieve silent speech recognition. SoundLip [8]
also utilizes the speaker of the smartphone to transmit acoustic
signals and leverages the microphone to receive the reflected
signals from mouth. EarCommand [27] is the first to implement
acoustic sensing on earphones for silent speech recognition. It
utilizes the IMU sensor attached on the earphone to detect the
motion interference (e.g., head motions). When new users use
EarCommand, the model needs to be fine-tuned with a small
number of samples.

B. Wearable Based Sensing

Recently, wearable sensing has received a lot of attention [28].
For example, BioFace-3D [29] proposes a 2D facial landmark
tracking and 3D facial reconstruction system through in-ear
biosensors. OESense [30] utilizes a self-made earphone with
the in-ear microphone to realize three applications including step
counting, daily activity sensing and hand-to-face gesture recog-
nition. EarGate [31] utilizes the self-made earphone to obtain the

Fig. 2. Tongue and mouth positions of English vowels [15].

bone-conduction gait sound to reliably detect the user’s gait for
user identification. EBP [32] utilizes an in-ear device to measure
blood pressure from the ear canal. WAKE [33] designs a novel
behind-the-ear wearable device to detect the bio-signals from
the brain, eye movements, facial muscle contractions, and sweat
gland activities. CanalScan [34] proposes a tongue-jaw move-
ment recognition system via ear canal deformation sensing using
smartphones. It can identify six tongue-jaw movements based
on a random forest classifier. Takashi et al. [35] utilize earphones
with in-ear speaker and microphone to build a facial expression
recognition system. It recognizes 21 facial expressions based
on the ear canal features utilizing the support vector machine
classifier. EarDynamic [16] proposes an ear canal-based user
identification system, which divides phonemes into 6 categories
according to the pronunciation positions and each category is
linked to one kind of ear canal deformation.

III. BACKGROUND AND PRINCIPLE

In this section, we present the background knowledge about
human speech, and analyze the relationship between speech and
ear canal deformation. Finally, we model the process of acoustic
signal propagation in the ear canal and investigate the feasibility
of utilizing acoustic signals to sense the ear canal deformation
for silent speech recognition.

A. Human Speech Production and Phonemes

Human speech production system involves three vital phys-
iological organs, i.e., lung, vocal cord, and vocal tract. Sound
is resonated and reshaped by the vocal tract which consists of
multiple organs, such as nose, mouth (tongue, teeth, and lips),
and throat.

The phoneme is the smallest distinctive unit of a language.
Vowels and consonants are the two major phoneme categories.
Specifically, vowels are produced when vocal cords constrict
airflow and the vocal tract is open. Tongue position is the most
important physical characteristic that distinguishes one vowel
from another [36]. For example, when the tongue moves to the
lower right corner and the mouth opens, the vowel /a:/ can be
pronounced, and when the tongue moves to the upper left corner
and backward, the vowel /i:/ can be pronounced, as shown in
Fig. 2 [15]. More generally, we show the vowel chart which
includes two dimensions of mouth and tongue movements. Ex-
tending or retracting the tongue forward or backward towards the
teeth produces a more front or back vowel sound, and lowering
or raising the tongue towards the lower jaw or towards the roof
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Fig. 3. Vowels and consonants categories based on the mouth and tongue
positions [16].

Fig. 4. Temporomandibular joints of the human skull [17].

of the mouth produces a more open or close vowel, as shown
in Fig. 3 [16]. The x-axis shows the information of the depth
of the tongue forward and backward, and y-axis displays the
information of the height of the tongue up and down. Similarly,
consonants are also the interaction of the speech organs (i.e., the
tongue, lips, and palate). As shown in Fig. 3(b), we also classify
the consonants based on the position of the mouth and tongue.
From Fig. 3, we can see that the position of the mouth and tongue
is an important factor in phoneme production, and each phoneme
corresponds to unique and consistent organ movements.

B. The Relationship Between Speech and Ear Canal
Deformation

We next describe the relationship between speech and ear
canal deformation. Specifically, ear canal deformation is caused
by the movement of the temporomandibular joints (TMJ) that
connect the jaw with the skull as shown in Fig. 4 [17]. When a
person is speaking, the mouth movements drive the TMJ to move,
shifting the ear canal wall. The tongue movements also lead to
changes of the ear canal. Researchers [37], [38] discover that
when TMJ moves, the ear canal volume is changed by almost
20 mm3, and similar TMJ movements cause similar ear canal
deformation. Motivated by this observation, we utilize the ear
canal deformation to realize silent speech recognition.

C. Sensing Ear Canal Deformation

Measuring the ear canal deformation caused by speech di-
rectly is challenging due to the structural complexity and invisi-
bility of the ear canal. In EarSSR, we discover that when acoustic
signals are sent into the ear canal, the ear canal deformation
causes variations on the reflected signals. This motivated us to
explore the feasibility of using acoustic signals to sense the ear
canal deformation.

We first model the propagation of acoustic signals in the
ear canal. Specifically, when an acoustic wave propagates in a
medium without reflective boundary, the incident acoustic wave
Pi can be defined as:

Pi = P0 cos(ωt− kx+ ϕ), (1)

whereP0 is acoustic pressure amplitude,ω is angular frequency,
k is wave number associated with wavelength, x is the prop-
agation distance, and ϕ is initial phase. When acoustic wave
propagates in ear canal, and is reflected by the ear canal wall,
the reflected acoustic wave Pr can be expressed as:

Pr = R ∗ Piexp(−α ∗ d), (2)

whereR is the reflectance,α indicates the attenuation parameter
of acoustic wave in the ear canal, and d is the propagation
distance. The attenuation coefficient α includes the thermal
attenuation αt and viscous attenuation αv [39], [40], which can
be calculated as:

αt =
ω2

2ρ0c3

(
3

4
η′ + η′′

)
, (3)

αv =
ω2χ

2ρ0c3

(
1

cv
− 1

cp

)
, (4)

α = αt + αv = A(ω, τ), (5)

η′, η′′, χ, cv , cp, ρ0 are related to the propagation media and
c is sound speed. The reflected acoustic wave Pr is affected by
the attenuation coefficient α. Moreover, when a user wears an
earphone, the earphone, ear canal, and eardrum would couple
together to form a closed space that is extremely sensitive
to acoustic pressure changes [41]. We thus can leverage the
multipath fading and amplitude variations of the received signals
to sense the subtle ear canal deformation.

To investigate the feasibility of utilizing acoustic signals to
sense ear canal deformation for silent speech recognition, we
conduct experiments to extract signals in different sessions. In
each session, we take off the earphones and put them back before
our experiment. The results are shown in Fig. 5. These subgraphs
represent each of these five vowels (i.e., /a :/, /o :/, /3 :/, /i :/,
and /u :/). From the figures, we can see that although there are
changes across different sessions, the signal patterns of each
phoneme are still very similar. This demonstrates the feasibility
of utilizing ear canal deformation to recognize silent speech.

IV. SYSTEM OVERVIEW

The system framework and processing flow are shown in
Fig. 6, which consist of the following modules:
� Signal Design and Processing Modul: We utilize the in-ear

speaker to transmit acoustic signals. The built-in micro-
phone captures the reflected signals from the ear canal.
We then synchronize the received signals with transmitted
signals using cross-correlation. After synchronization, we
remove the direct-path interference signal from the speaker
to the microphone to obtain clean ear canal reflection
signals.
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Fig. 5. Extracted ear canal deformation features of the different phonemes.

Fig. 6. System overview of EarSSR.

Fig. 7. Transmitted signals in the time and frequency domains.

� Feature Extraction Module: In this module, we first design
a segmentation algorithm to detect the ear canal deforma-
tion events in the reflected signals. We then utilize the
SVDD method to find a minimum hypersphere to dis-
tinguish between speech-induced and non-speech-induced
ear canal deformation events. Finally, we extract the trans-
fer function and CWT features from ear canal reflection
signals for silent speech recognition.

� Silent Speech Recognition: In this module, we first design
a data augmentation scheme to enrich the limited training
samples and reduce the cost of data collection. We elab-
orate a two-channel hierarchical neural network, SsrNet,
to aggregate features. Finally, we develop an incremental
learning method to adapt the trained network for new
words.

V. SYSTEM DESIGN

In this section, we present the design details of each module.

A. Signal Design

In EarSSR, the transmitted signals are designed as FMCW
chirps with frequency sweeping from 16 kHz to 22 kHz, and
a pseudo-noise (PN) preamble is added at the beginning of the
transmitted signals for synchronization, as shown in Fig. 7. As
the length of the ear canal is only 2–3 cm, a long chirp may cause

Fig. 8. Example of an event with silent speech: (a) Raw received signals and
(b) Short-term energy spectrum.

the reflection signals to collide with the transmission of the next
chirp, and a too short chirp will result in a low SNR, we thus set
the chirp length as 10 ms.

B. Deformation Event Detection and Segmentation

To effectively recognize the silent speech event in the received
signals, EarSSR performs ear canal deformation event detection
and segmentation first. Fig. 8(a) plots the received signals when
a user speaks. We can see that it is challenging to detect ear canal
deformation events in the time domain. We then calculate the
energy spectrum of the received signal, as shown in Fig. 8(b). We
can see that signal energy varies dramatically in the ear canal
deformation region, while in other regions it is relatively flat.
Therefore, we can extract the ear canal deformation events based
on the short-term energy variation. To segment the signal vari-
ation part, we design an ear canal deformation event detection
and segmentation algorithm. Specifically, we first calculate the
energy (EN ) of all the samples within a selected time window
as:

EN(t) =

M∑
m=0

(A2(t+m ∗ �t)), (6)

where A(t) denotes the amplitude reading at time t, m is the
sample index, and �t is the sample interval. M denotes the
number of samples within the sliding window. We set the sliding
window size as 20 ms based on the length of the fundamental
speech tone [42]. We then apply a peak detection algorithm [43]
onEN to identify peaks. If the detected peak is larger than a pre-
defined threshold, an ear canal deformation event is considered
to be detected. The detected peak is denoted as an event peak.
We then form an event time window of 20 ms with the event
peak as the center point. To determine the start and end points of
this event, we first identify the maximum peak within the event
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Fig. 9. Signal variation patterns of different words.

window. Note that the maximum peak and the event peak may
not be the same one. We then take the maximum peak as the
initial position to search the start and end points of the event
on the left and right sides of the maximum peak respectively.
The start and end points are determined when two adjacent
peaks have an amplitude difference smaller than a predefined
threshold (empirically set as 6% in our implementation) which
indicates a relatively stable noise region without speech motion.
Note that two adjacent peaks may still cause false positives. We
therefore adopt three adjacent peaks and ensure three adjacent
peaks are close enough to reduce the chance of early stop. We
then perform a linear interpolation [44] operation to make sure
each event is the same length.

Fig. 9 shows the detection and segmentation results of the
proposed algorithm on 3 words (i.e., “one”, “answer”, and
“information”). The proposed algorithm precisely detects and
segments ear canal deformation intervals. In addition, we can
also find that the numbers of signal peaks induced by the three
words are different because peaks correspond to the word’s syl-
lables. While “one” consists of one syllable, “answer” consists
of two syllables.

C. Feature Extraction

In this section, our goal is to extract unique and stable
speech-induced ear canal deformation features for silent speech
identification.

1) Transfer Function-Based Feature Extraction: Transfer
function (TF) of the reflected signals can depict the variations
of the signal caused by ear canal deformation. We define the
transfer function H(f) as:

H(f) =
psd(y(t))

psd(x(t))
, (7)

where psd(y(t)), psd(x(t)) are the power spectral density of the
received signals y(t), and transmitted signals x(t), respectively.
We estimate H(f) using Welch’s averaged and modified peri-
odogram. We extract the TF feature with 2400 Discrete Fourier
Transform (DFT) points and a 20 ms hamming sliding window
with 50% overlapping.

Fig. 10(a) illustrates the extracted TF features of different
words. We can discover that the TF features of different words
exhibit significantly different profiles. Fig. 10(b) shows the TF
features of the same word extracted in different rounds. We
can see that the TF features of the same word exhibit highly
consistent patterns. These results show that the TF feature can
be used for silent speech recognition. However, the geometry
of each individual’s ear canal is unique [41], which causes TF

Fig. 10. TF feature of the ear canal deformation caused by speech:
(a) different words; (b) same word; and (c) same word from different subjects.

feature differences among different users for the same speech.
As shown in Fig. 10(c), we can see that the TF features of the
same word are slightly different for different subjects.

2) CWT-Based Feature Extraction: While the TF feature is
unique for different words, it varies among subjects. To enhance
the robustness, we would like to capture signal feature indepen-
dent of subjects. In EarSSR, the transmitted FMCW signal x(t)
can be represented as:

x(t) = cos

(
2π

(
f0t+

Bt2

2T

))
, (8)

where f0 is the starting frequency, B is the bandwidth and T is
the sweep time interval. The received signal is a superposition
of all the reflected paths from the ear canal, and each path is an
attenuated version of the transmitted signal. Thus, the received
signal y(t) can be represented as:

y(t) =

n∑
i=1

αi cos

(
2π(f0(t− τi) +

B

2T
(t− τi)

2

)
, (9)

where αi and τi are the signal attenuation and the time delay of
i-th path signal.

Then the received signal is multiplied by the transmitted signal
to obtain the mixed signal. The mixed signal is passed through
a low pass filtering and can be represented as:

m(t) =
n∑

i=1

αi cos

(
2π

(
B

T
τit+ f0τi − B

2T
τ2i

))
(10)

In order to obtain the signal variations caused by the ear canal
deformation and eliminate static path related to the ear canal
structure, we focus on the dynamic vector of the mixed signal,
which can be represented as:

Hd = γ cos

(
2π

(
B

T
τt+ f0τ − B

2T
τ2
))

, (11)

where γ, τ are the amplitude and time delay of the dynamic path.
Traditional methods utilize the phase to extract the fine-

grained variation. Since the speech-induced ear canal deforma-
tion is sub-mm level [38], the phase variation can be calculated
as: ϕ = 2πf0τ = 2π∗16000∗2∗0.0001

343 = 0.02π. Theoretically, the
fluctuation of 0.02π is sufficient to be detected. However, we dis-
cover that phase information is disturbed by body motions (i.e.,
respiration, heartbeat, and walking), as shown in Fig. 11(a).
We can see that the speech-induced phase variation is just
slightly larger than the phase noise. Thus, traditional phase-
based methods do not work well for detecting speech-induced
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Fig. 11. Extracted features from the mixed signals: (a) phase variation and
(b) amplitude variation.

Fig. 12. CWT-based feature from different subjects with different words.

signal variation. Fortunately, the amplitude variations induced
by speech are more obvious. As shown in Fig. 11(b), the ear
canal deformation caused by speech (inside of the red box) can
be clearly observed in the amplitude variations.

To enhance the feature representation, we further apply the
Continuous Wavelet Transform (CWT) to the amplitude curve
to obtain the spectrum in both time and frequency domains.
Specifically, CWT can be calculated as:

CWT (f, φ, τ) = {f(t),Wφ,τ(t)}

= φ−1/2
∫
R

f(t)W

(
t− τ

φ

)
dt, (12)

where CWT (f, φ, τ) is the extracted wavelet spectrum, f(t) is
the signal function, and W (φ, τ(t)) is the wavelet base function
with φ and τ representing the resolution of frequency and time
domain respectively. The wavelet base function affects the result
of the wavelet transform. In EarSSR, we apply generalized
morse wavelets as the wavelet base function due to their high
resolution in the low-frequency and time domain. Fig. 12 shows
the CWT-based features of three words for three subjects. We
can see that the CWT features of the same word are similar
for different subjects. It shows that the extracted features is not
affected by subject diversity.

The Difference Between CWT and TF Features: The TF fea-
ture characterizes the channel response of different frequencies,
i.e., the signal power distribution over different frequencies. It
depends on the geometry of the ear canal and can, therefore,
reflect the deformation of the ear canal caused by speeches. CWT
feature describes the power of the signal at different timestamps
and at different frequencies. In our design, we perform CWT

Fig. 13. Architectural diagram of SsrNet.

operation after removing the carrier frequency and therefore the
obtained CWT feature characterizes the vibration property of the
ear canal induced by speech which is dependent on the speech
and independent of the ear canal structure.

D. SsrNet Network Model

In this subsection, our goal is to fuse the above two features
to achieve high robustness and high accuracy for silent speech
recognition. The above two features have different dimensions,
i.e., TF feature is a 1D vector while CWT feature is a 3D image.
The two features can be used to describe the same word and
provide complementary information.

We propose SsrNet, a two-channel hierarchical model to
effectively fuse the two features. We apply Recurrent Neural
Network (RNN) [45], [46], [47] on the TF feature to capture the
long-term dependencies in sequences. We then apply Convolu-
tional Neural Network (CNN) [48], [49] to extract information
from the CWT image feature. Finally, the features from the two
channels are concatenated for recognition.

The model architecture is shown in Fig. 13. For the first
channel, we design the network structure based up MobileNet
V3 [50]. It is a lightweight network that can be deployed on
mobile devices. The input of the first channel is the 224 × 224
× 3 spectrogram image. We add 17 residual bottlenecks after the
Conv2D layer, apply the attention block in each bottleneck, and
add the max pooling weights on the attention block, which can
automatically focus more attention on the useful feature regions.
To enhance the capability of the network to extract fine-grained
features from the image, we add two channel-attention blocks on
the bottleneck blocks. The global average pooling layer (GAP)
is employed to output the extracted features. For the second
channel, it is a recursive network and the input of the second
channel is the 6000 × 1 vector sequence. The gated recurrent
unit (GRU) is chosen as the basic unit, including the update gate
and reset gate used to capture the dependencies in the sequence,
and outputs the extracted features.

We add batch normalization (BN) at the convolutional layer
and apply dropout after the fully connected layer to avoid over-
fitting. We then add a global average pooling layer and a fully
connected layer to map the feature representation F into a new
space W . Finally, the probability of different word categories
ŷ could be calculated from the softmax layer, and we utilize a
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Fig. 14. t-SNE visualization of two combined features.

loss function to compute the similarity between the predicted
label ŷi and the ground-truth yi. The loss function L(W ) can be
calculated as:

L(W ) = − 1

Nb

Nb∑
i=1

yi ∗ log(ŷi) + k ∗R, (13)

where Nb is the size of the batch, R is a regularization process
and k is the hyper-parameter.

We train the model on the training set with batch size 80,
and we utilize the adam optimizer with 0.001 initial learning
rate to minimize the loss function. By applying the proposed
method, we visualize the learned features for ten words from
three subjects with t-SNE [51], as shown in Fig. 14. We can
see that different words from different subjects have distinct
feature distributions. It illustrates that SsrNet can effectively fuse
features from different modalities for silent speech recognition.

E. Discriminating Speech and Non-Speech Induced Ear Canal
Deformation

We oberve that head and mouth motions also lead to ear
canal deformations, resulting in signal variations. It is thus
necessary to recognize whether the ear canal deformation is
speech-induced or non-speech-induced.

As shown in Fig. 15, we ask three volunteers to perform the
following experiments: (1) opening and closing the mouth; (2)
shaking the head left and right; (3) speaking without vocal-
ization. We then extract the amplitude feature from the mixed
signals, as introduced in Section V-C2. We discover that these
activities also cause variations of the signal. But a key observa-
tion is that the extracted speech-induced signal variations exhibit
unique patterns, such as more peaks and valleys, compared with
the non-speech interference patterns caused by head motions and
mouth motions. This motivates us to differentiate the speech-
induced and other non-speech-induced signal variation patterns
by identifying unique features related to speech. We then extract
twelve signal features, such as peak to peak value, the number
of peaks, and the length, as shown in Table I. We then utilize
the SVDD algorithm [52] to find a minimum hypersphere to
identify speech-induced signal variations. When an ear canal
deformation event is in the hypersphere, EarSSR determines
that the signal variation is speech-induced.

TABLE I
TWELVE KINDS OF STATISTICAL FEATURES

F. Data Augmentation

Because the speaking behaviors (e.g., speech speed, and
mouth movement amplitude) are user-dependent, we thus design
a data augmentation scheme to expand the size of training
data set. This process significantly enriches the data diversity
and reduces the data collection load. Inspired by the data aug-
mentation method in the speech recognition domain [53], we
design the data augmentation scheme for our two different
forms of features (vector feature and image feature). For the
TF feature (vector) Xf , we apply the jitter method, which adds
different categories of noise to the original data to enhance the
ability of the model against noise. For the CWT feature, we apply
the augmentation scheme proposed by Park et al. [54], which
consists of three key steps, i.e., time warping, time masking and
time-frequency masking.

Time Warping: Given the CWT spectrum with a time length
of T , we view it as an image where the horizontal axis indicates
time and the vertical axis indicates frequency. We then stretch
the spectrum with the time length of (W,T −W ) to a larger
time length (W − d, T −W + d) as shown in Fig. 16(b) with
(0 < d < W ) and (W < T/2).

Time Masking: Time masking is applied to mask a time
window [ti, ti +�t] with �t as the masked time interval and
(0 < ti < T −�t), as shown in Fig. 16(c).

Time-Frequency Masking: Time-frequency masking means
that time masking and frequency masking occur at the same
time. Frequency masking is applied to the frequency range
[fi, fi +�f ], with �f as the masked frequency range, F as
the total frequency range and (0 < fi < F −�f), as shown in
Fig. 16(d).

G. Accommodating New Words

To accommodate more words, a common method is to re-
train the whole model including the old words and new words.
However, retraining comes with a large time cost. To solve the
problem, we employ an incremental learning method [55], where
the input data is continuously used to extend the existing model’s
knowledge. Instead of retraining the whole network, we inherit
the parameters from the original network and fine tune the model
under the old-model constraints to achieve high accuracy in
recognizing both new words and old words at low cost.

Algorithm 1 illustrates how this process works in detail. First,
we compute Yo, which is the output of the original network for
new words on the old parameters (defined by θs, and θo). Next,
we train the model to minimize loss function for all words and
regularize R using stochastic gradient descent. We freeze θs
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Fig. 15. Example of non-speech-induced signal variations and speech-induced signal variations: (a) Opening and closing mouth; (b) shaking the head from left
and right; and (c) speaking.

Fig. 16. Data augmentation. (a) Raw; (b) time warping; (c) time masking; and (d) time-frequency masking.

Algorithm 1: Accommodating New Words.
Start with:
θs : shared parameters
θo: specific parameters for old model
Xn: training samples of the new words
Yn: labels of the new words
Initialize:
Yo ← SsrNet(Xn, θs, θo) // compute output of old
model for new word
θn ← randinit(|θn|) // randomly initialize new
parameters

Train:
Define Ŷo ≡ SsrNet(Xn, θ̂s, θ̂o) // old model output
Define Ŷn ≡ SsrNet(Xn, θ̂s, θ̂n) //new model output
θ∗s, θ

∗
o, θ
∗
n ← argminθ̂s,θ̂o,θ̂n

(λoLold(Yo, Ŷo) +

Lnew(Yn, Ŷn) +R(θ̂s, θ̂o, θ̂n))

and θo and train θn to convergence. Then we jointly train all
weights θs, θo, and θn until convergence. For new words, the
loss encourages predictions Ŷn to be consistent with the ground
truth Yn. For old words, we want the output probabilities for
each word to be close to the recorded output from the original
model.

VI. EVALUATION

In this section, we first introduce the experiment implementa-
tion and dataset. Then a series of experiments are conducted to
evaluate the generalization and robustness of EarSSR. Finally,

Fig. 17. Prototype earphone in EarSSR.

we evaluate the effect of sensing signal on user’s comfortable-
ness.

A. Experiment Implementation

There are several commercial earphones equipped with in-ear
microphones (e.g., Apple Airpods Pro [56] and Bose QuietCom-
fort [57]). Due to the hardware restriction, we can not obtain
received signals from the in-ear microphone. Thus, we design
EarSSR by attaching a cheap low-end microphone chip (10
cents) to the front side of the earphone’s speaker, as shown
in Fig. 17. In addition, we equip the earphones with sponge
earplugs to ensure that the earphone can fit snugly in the ear
canal. We connect the earphones and devices (i.e., smartphone
and laptop) via a 3.5 mm audio interface to control the signal
transmission and recording.

B. Data Collection

We recruit a total of 50 volunteers (36 males and 14 females in
the range of 20 to 57 years old) and spend more than three months
collecting the data. Among these volunteers, three volunteers are
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TABLE II
COMMANDS SET: ENGLISH COMMAND SET

Fig. 18. Confusion matrix of letter-level recognition in EarSSR.

native English speakers, five volunteers major in broadcasting
and received professional pronunciation training with fluent oral
English, three volunteers do not use English frequently, and the
rest are non-native English speakers who can speak English
fluently. During our experiment process, we ask the users to
wear the earphones tightly to mitigate the issue of earphone
movements. The experiments were IRB-approved by the host
university.

We thus collect two silent speech datasets: a letter-level
dataset and a word-level dataset. The letter-level dataset contains
26 alphabets and the word-level dataset contains 50 words and
phrases which can be categorized into six groups (i.e., number
1–10, 11 interactive commands, 3 voice assistant commands,
8 navigation commands, 6 privacy-related words, and 12 high-
frequency words), as shown in Table II. These volunteers speak
each word/phrase 10 times in one group and 10 groups of data
are collected in total. In addition, volunteers are asked to take
off and put back on the earphones between groups to simulate
the behavior of wearing earphones in daily life. We divide
the collected data into training set, validation set, and test set
according to the percentage of 60%, 20%, and 20%. We perform
10× data augmentation on training sets. We adopt accuracy,
precision, recall, and F1-score as the evaluation metrics.

C. Overall Performance

We first evaluate our system’s performance on recognizing
letters and words, and then verify the effectiveness of the feature
fusion and network designs.

1) Accuracy of Letter-Level Silent Speech Recognition: We
first evaluate the ability of our system to recognize the 26
alphabet letters. The confusion matrix is shown in Fig. 18. The

TABLE III
AVERAGE ACCURACY FOR DIFFERENT NUMBERS OF SYLLABLES

Fig. 19. Performance of feature fusion (A: CWT feature; B: TF feature).

overall recognition accuracy is about 82%. It is challenging to
achieve letter-level recognition since letters have fewer syllables
and some letters have similar mouth movements (i.e., “e” and
“g”, “s” and “x”, etc).

2) Accuracy of Word-Level Silent Speech Recognition: For
word-level recognition, we employ 50 commonly used words
and phrases as shown in Table II. The overall recognition accu-
racy is about 93%. We further group the words/phrases based
on the number of syllables and show the recognition accuracy
in Table III. We can see we achieve a higher accuracy with
multi-syllable words. This is because the multi-syllable words
contain more mouth and tongue movements, which bring richer
ear canal deformation features for higher recognition accuracy.

3) Performance of Feature Fusion: To show the effectiveness
of the proposed feature fusion scheme, we conduct experiments
to compare the recognition performance of SsrNet with only one
feature or raw fusion of two features on the word-level dataset.

Specifically, we abbreviate the CWT feature as “A”, and TF
feature as “B” and design five different strategies to evaluate the
performance of feature fusion: (1) apply CNN to A, denoted as
“CNN(A)”; (2) apply RNN to B, denoted as “RNN(B)”; (3)
raw concatenation: apply RNN to the two features, denoted
as “RNN(A+B)”; (4) raw concatenation: apply CNN to the
two features, denoted as “CNN(A+B)”; (5) SsrNet. The results
are shown in Fig. 19. When only CWT feature or only TF
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Fig. 20. Comparison of SsrNet with other CNN model.

TABLE IV
NUMBER OF PARAMETERS IN DIFFERENT NETWORKS

feature is employed, the achieved precision is about 60% and
75% respectively. It is interesting to see that the recognition
performance of “RNN(A+B)” is even worse than applying one
feature “RNN(B)” alone. It indicates that RNN network does
not fuse the two features well. CNN (A+B) is more effective
than CNN (A) but the precision is still below 85%. The pro-
posed SsrNet achieves a precision close to 95% which shows
that the proposed SsrNet can efficiently fuse the TF and CWT
features.

4) Performance Over Different Network Structures: In Ssr-
Net, the first channel is a CNN network. We evaluate the perfor-
mance of EarSSR based on five different CNN network struc-
tures (i.e., mobileNet V1 [58], mobileNet V2 [59], VGG-16 [60],
VGG-19 [61], and ResNet-50 [62]). We fine-tune the five pre-
trained CNN networks using our dataset with 50 words. Each
network structure is trained 3 times and the network is tuned for
200 epochs each time to ensure convergence. Fig. 20 shows that
the proposed SsrNet outperforms the other networks. Among the
5 networks, VGG-16 also achieves an accuracy around 90%.
But as shown in Table IV, SsrNet is trained with much fewer
parameters (2.44 million) compared to VGG-16 (14.71 million).

D. System Robustness

We now evaluate the robustness and reliability of EarSSR.
1) Subject Diversity: We use data collected from 40 subjects

to train the model and then apply the trained model on 10 new
subjects (Person Index 41–50). As shown in Fig. 21, EarSSR
achieves good performance on new users. The average accuracy
is above 80% and 90% for word-level and letter-level datasets,
respectively. These results show that our system generalizes well
to new users and we do not need to train all the users.

2) The Impact of Data Augmentation: We now evaluate the
impact of the data augmentation ratio. The ratio of augmentation
varies from 0 to 20 times at a step size of 5. From Fig. 22, we
can see that without data augmentation, the precision is only
about 60% and 75% for letter-level and word-level recognition.

Fig. 21. Recognition performance of letters and words with different subjects.

Fig. 22. Performance of data augmentation method.

Fig. 23. Recognition accuracy under different ambient noise.

We further found that a data augmentation ratio of 10 was
the most effective in improving the recognition precision. If
the data augmentation ratio is further increased, the accuracy
even decreases. This is because too much generated data can
compromise the features contained in the data.

3) Resistance to Environmental Noise: We evaluate the per-
formance of EarSSR in different environments. We choose four
environments with different noise levels that are 58 dB, 67 dB,
73 dB and 86 dB. The result is shown in Fig. 23. We can
see that noise does slightly affect the performance. However,
even in the very noisy environment (86 dB), reasonably good
performance (a precision higher than 90%) can still be achieved.

4) Robustness on Earphone Wearing Positions: We first con-
duct experiment to collect measurements when the sponge
earplugs are removed and the earphones are inserted shallowly.
The results are shown in Fig. 25(a). We can see that the precision
decreases from 93% to 72% under shallow conditions without
the sponge to constraint the earphones’ movements. Note that
earphone manufactures also include silicon ear tips of different
sizes to fit ear canals of different sizes. Apple includes ear tips
of four different sizes to ensure the earphone is always tightly
and comfortably worn in our ear canal. Thus, to alleviate the
impact of earphone movement during speaking, it is better to
insert the earphones in a deep location and equip earphones with
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Fig. 24. Earphone wearing positions.

Fig. 25. Recognition performance with different earphone wearing positions:
(a) Depths and (b) angles.

Fig. 26. Performance comparison for different body motions.

sponge/silicon earplugs. Moreover, we evaluated three earphone
wearing angles (0◦, 90◦, 180◦) as shown in Fig. 24. As shown in
Fig. 25(b), EarSSR still works well under other wearing angles.

5) Reliability on Body Motions and Face Occlusion: The
user’s body movements introduce interference to the ear canal’s
reflection signals. Moreover, mask wearing has become common
in public due to the pandemic of COVID-19. To evaluate the
robustness of EarSSR against body motions and face occlusion,
we examine EarSSR under different body states: static (without
facial mask), static (with facial mask), hand motion (arms raised
and swung left and right), walking (at a speed of 2 km/h on a
treadmill) and head motion (shaking head left and right). The
result is shown in Fig. 26, we can see that static (with facial
mask), hand motion and walking have limited impacts on the
performance of EarSSR. The head motion does have a slight
effect on the system performance. This is because the head
motion also alters the deformation of ear canal.

6) Speech-Induced Ear Canal Deformation Detection: We
then evaluate the performance of our system to discriminate
between speech-induced and non-speech-induced (i.e., caused
by head motions and mouth motions) ear canal deformation. For
collecting the non-speech-induced ear canal deformation data,
we ask the volunteers to shake their heads from left to right, or
open and close their mouths. Volunteers do not speak during this

TABLE V
SPEECH-INDUCED EAR CANAL DEFORMATION DETECTION

Fig. 27. Performance of incremental learning scheme: (a) training time and
(b) accuracy.

Fig. 28. Recognition performance when users listen to music.

process. The training set is composed of 50% speech-induced
data and 50% non-speech-induced data. The rest is the test set.
The result is shown in Table V. We can discover that 95.08% of
the speech-induced ear canal deformation events are correctly
detected. It illustrates that EarSSR can effectively detect speech-
induced events.

7) Performance on New Words: We evaluate the effective-
ness of the proposed incremental learning algorithm on new
words. We first initialize our SsrNet model by training data of
ten words. Then we add various numbers of new words (1 to 5) to
evaluate the system performance with and without applying the
incremental learning method. Fig. 27(a) presents the training
time of our learning model. It manifests that the incremental
learning method help reduce training time remarkably. Fig. 27(b)
shows the average identification prevision for different num-
bers of new words. The precision with incremental learning is
always above 97% and is comparable to that achieved without
incremental learning.

8) Impact of Music Play: Listening to music is the key func-
tion of earphones. We now evaluate if the proposed system can
recognize silent speech when users are listening to music. We
ask the volunteers to conduct silent speech experiments and at
the same time listen to music using the same earphones. The
evaluation results are shown in Fig. 28. We can see that EarSSR
has a precision above 80% on letter and over 90% on word
recognition. This is basically the same as that without music
listening. This is because EarSSR transmits FMCW signal on
the frequency range of 16 kHz–22 kHz which is higher than
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TABLE VI
RUNNING TIME OF EARSSR

music (below 10 kHz). The music can be removed by a bandpass
filter and thus playing music in earphones does not affect the
recognition performance of EarSSR.

E. System Overhead and Latency

1) System Latency: We implement an app on Samsung
Galaxy S5 and employ a host PC with an AMD Ryzen 7 5800X
CPU, 32 GB memory, and a Nvidia TITAN Xp GPU as the cloud
server. The app is used for data collection and result output. The
feature extraction module and the SsrNet model are implemented
on the server. The system latency is defined as the time difference
between the user finishing the input and EarSSR outputting
the result to the user. The latency is composed of four parts,
i.e., network latency, data processing, feature extraction, and
SsrNet recognition. Table VI shows the total latency of EarSSR,
i.e., 0.625 s. We notice that the feature extraction module is
the most time-consuming component (0.3 s). The time of data
processing is 0.18 s, and the recognition time of SsrNet is 0.1 s.
Moreover, our SsrNet model is a lightweight network which can
be deployed on mobile devices.

2) System Power Consumption: We connect the Samsung
Galaxy S5 and our earphone via a 3.5 mm audio interface.
We deploy PowerTutor [63] app on the smartphone to measure
the power consumption of EarSSR. The results show that the
EarSSR consumes an average of 23.1 J of energy per minute,
which means that the power consumption of the EarSSR is 385
mW . This power consumption is equivalent to a voice call.
Moreover, we discover that signal transmission is the most power
hungry part of our system. We can thus design power control
schemes, such as triggering signal transmission only when the
user is speaking to save power consumption [64].

F. User Experience Survey

In this section, we evaluate the effect of sensing signal on
user’s comfortableness. We adopt a questionnaire-based method,
which is commonly used in social and health sciences [65]. We
invited 50 volunteers to wear the earphone and participate in
our experiment. We asked the volunteer to rate their experience
on the scale of 1 to 5 with 1 indicating “Absolutely not un-
comfortable” and 5 indicating “Extremely uncomfortable”. The
detailed scales are shown in Table VII. We transmit the signal
for one minute and chirps with a length of 10 ms are transmitted
continuously. The signal volume is set as 6% of the maximum
volume.

The result is also shown in Table VII, we can see that 8% of
volunteers report absolutely not feeling uncomfortable and 84%

TABLE VII
DOES CONTINUOUS OR REPEATED ACTION OF PLAYING SOUND CAUSE YOU

UNCOMFORTABLE?

of volunteers report they are basically not feeling uncomfortable.
On the other hand, 6% of volunteers report they feel slightly
uncomfortable and 2% of volunteers report that they feel un-
comfortable. To address this issue, we embed the sensing signal
into music [64] and transmit the combined signal to mitigate
the negative effect of sensing signal. The new result is also
presented in Table VII. We can see that when we embed the small
sensing signal into music, no volunteers report uncomfortable.
We believe embedding sensing signals into music is an efficient
method to improve user experience with acoustic sensing.

VII. LIMITATION

In this section, we will discuss the limitations of EarSSR and
potential future work.
� Implementation on wireless earphones: The proposed sys-

tem is currently implemented on wired earphones. This is
because wireless earphones support the use of speaker and
microphone at the same time only in the hands-free mode.
However, in this mode, due to the transmission capability of
Bluetooth, the audio sampling rate is limited to 16 kHz and
therefore can not support ultrasound signal transmission.

� Sentence-level Recognition: This work focused on letter-
level and word-level recognition. This is also the basic unit
for sentence-level recognition. To achieve sentence-level
recognition, the extra component is to segment the sentence
into words and there is a rich literature [66], [67], [68]
on this. We plan to employ advanced speech segmen-
tation algorithms (e.g., attention-based encoder-decoder
network [69]) to improve the accuracy of sentence-level
recognition in our future work.

VIII. CONCLUSION

In this paper, we present EarSSR, the earphone-based silent
speech recognition system. We utilize the earphone to transmit
inaudible acoustic signals to obtain the fine-grained ear canal
deformation for silent speech recognition. We conduct extensive
experiments to demonstrate the effectiveness and robustness of
the proposed system.
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