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Toward Multi-area Contactless Museum Visitor Counting with

Commodity WiFi
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CHAO FENG, Northwest University, School of Information Science and Technology, China

Multi-area visitor counting plays a critical role in museum management, which can help administrative staff better study

visitor flows and hotspots, so that they can ensure the quality and safety of visits. Internet of Things (IoT) techniques facili-

tate efficient recording and understanding of visitors’ spatial and temporal distribution in museums, and traditional visitor

tracking applications use surveillance cameras or wireless connections with portable smart devices. However, these methods

either involve privacy concerns or face the obstacle of getting natural behavioral data of all visitors. This article explores an

IoT monitoring methodology in the field of museum studies, proposing a commodity WiFi-based head-counting framework

that does not need the visitor to connect with any device. Our system analyzes the Channel State Information amplitude

fluctuations at the fixed receiver caused when visitors cross the line-of-sight link. It enables multi-area visitor counting by

achieving In-and-Out traffic detection at different sites with a convolutional neural network algorithm. The method also

allows for a rough classification of visitor types based on body size, and an extra transfer module is presented to reduce

training time for increasing sensing scenarios. Over 2,300 samples at five different sites were collected to test the usability.

Experiment 1 implemented in three environments/deployments demonstrated that the proposed approach can be potentially

implemented in variable sites of museums. It achieved high up to 95% and 99% accuracies for identifying the number and

direction of people crossing, respectively. Experiment 2 sampled adults, children, and adult-child groups at a science museum

and achieved approximately 89% classification accuracy of visitor types. Experiment 3 collected data for all cases in which up

to three targets entered and exited simultaneously, and reached a recognition accuracy of around 88% for nine different cases.

The potential and limitations for the practical application of wireless contactless sensing to cultural spaces are discussed.
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1 INTRODUCTION

Understanding the visitor traffic is central to museum operation, it can be of benefit to both visitors and mu-

seum administrators. On the one hand, knowing the real-time crowd situation and historical hotspots of the
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museum helps visitors learn about popular exhibits and adjust their visit plans, improving the visitor expe-

rience. On the other hand, the administrator requires to know the visitors’ points of interest, to better pro-

vide services like exhibit recommendation and route design, as well as accumulate experience in follow-up

curations.

Visitor traffic detection in museums is driven by a simple question: how to obtain high-quality, large-scale data

with the informed consent of the privacy-sensitive visitors? Many efforts related to Internet of Things (IoT)

have been made to answer the question, which can be mainly divided into two categories, device-based (contact)

and device-free (contactless), depending on whether the visitor needs to carry the device or not. Some portable

smart devices, such as smartphones, GoPros, or guides carried by visitors [21, 50, 56] could calculate the location

or nearby exhibits in real time and transmit the information by wireless signal, but not all visitors are willing to

accept the device-based solutions due to the burden of carrying or potential privacy risks. In contrast, device-free

methods attract more attention, since they do not require the target to wear any device. For example, surveil-

lance cameras can be used to efficiently extract the number or route of the targets [25, 62, 87], which however

is sensitive to obstacles and angle conditions, hindering the sensing accuracy. Although some other methods,

such as the Passive Infrared (PIR) sensor [75] and Ultra-wideband (UWB) [11], are less affected by light

and occlusion and can achieve accurate and privacy-preserving counting, large-scale deployments in various

environments may lead to relatively high costs.

To meet the requirements of desirable accuracy and scalable deployment of visitor traffic sensing, this article

attempts to design and test an IoT smart space technique that has not been fully experimented with in the

museum environment. Specifically, we propose to leverage commercial-off-the-shelf (COTS) WiFi devices

to achieve contactless visitor counting in multiple sites of a museum. COTS WiFi transceivers are very cheap

and can be widely deployed in museums. Fine-grained Channel State Information (CSI) is easily accessible

on commodity WiFi devices. Recently, many researchers have proved that WiFi CSI can be used to sense target

activity based on the fact that different activities cause different signal changes [32, 55, 77, 78, 89]. Although

WiFi-based device-free sensing technology offers a natural, privacy-preserving, and low-cost possible solution,

framework design and field tests in museums are relatively scarce. Therefore, this article aims to implement an

integral scheme for multi-area visitor counting, making up the gap between the general WiFi-based contactless

sensing approach and the multi-area museum visitor counting. Our high-level idea is to construct the unique

relationship between visitor traffic and CSI amplitude change.

However, translating our high-level idea into a practical system requires us to overcome several significant

challenges. First, most areas in a museum are opened and interconnected, people who come to one site may

moves to another site at the next moment. So it is difficult to decide where to deploy the WiFi transceivers. The

past attempts choose to place the transceiver in a certain area to detect the crowd size inside [14, 43, 80, 92], which

while lacking clarity in monitoring spatial boundaries, thus hinders the application of open multi-region sensing.

For instance, if more than two pairs of transmitter and receiver devices are deployed, respectively, in adjacent

rooms, then the current counting models may be disturbed by the visitors in neighboring areas. Therefore, given

the particularity of the museum environment, this article proposes to achieve visitor counting by flow counting

at the door between any two adjacent sites. Specifically, the problem of multi-area visitor counting could be

converted into judging the number of people passing the door between neighboring regions. Considering the

change in WiFi signals caused by persons crossing the line-of-sight (LoS) is greater than those caused by other

walking directions, the transmitter and receiver are separately deployed in pairs on the connection location

between every two zones (see Figure 1), which allows the location of the devices to be the boundary of artificially

defined areas.

The next question is how do we achieve accurate flow counting? To answer this question, existing systems

employ a similar deployment for counting the passing people [18, 91], while not yet having implemented direc-

tion judgment. If we only count the visitors without identifying whether they are entering or leaving, then there
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Fig. 1. Example application of the proposed system.

will be a severe misjudgment in identifying the head count inside the area. In this article, we aim to design an

algorithm that is capable of recognizing both the number and direction of people passing like [17, 83, 84] in a

real museum scenario. We associated two receiving antenna amplitudes over time with the ground truth using

a two-channel convolutional neural network (CNN), to extract unique features for head count and direction

recognition. Furthermore, the network is expected to identify the type of the visitors passing through, such as

an adult or a child, given the disparity in the signal interference between people with large and small body sizes.

For cultural space scenes, the detection of simultaneous moving in and out is also practical.

Finally, we assume the subsequent renewal of the system. The flexible layout of multiple museum spaces de-

termines the diversity of equipment deployments. When the system is required to improve the ability to identify

more head count or adapt to a wider range of situations, for each deployment point all parameters need to be

totally retrained with new samples, which can take a lot of time. As a result, the reusability of feature extraction

parameters is taken into account. This article additionally introduces pre-training and fine-tuning to minimize

the training cost when the identifiable cases increase.

Contributions. To summarize, our main contributions can be summarized as follows:

• This article designs a framework for contactless multi-area visitor counting in museums with commodity

WiFi. Each monitoring site requires only a cheap router and a mini-pc with two antennas. To the best of

our knowledge, it is the first study that implements human-centered device-free WiFi sensing in museums.

• This article proposes a two-channel CNN model to identify the number, direction, and visitor type of

passing people by extracting unique features from CSI measurements. A transfer learning approach is

involved to reduce the training time for the addition of new samples.

• We evaluate the system performance in multiple real museum scenarios. Intensive experimental results

show that the system can achieve up to 95% and 99% accuracies for head count and moving direction

recognition, respectively. The pre-training and fine-tuning of the CNN model structure could reduce the

average training time by about 75% while ensuring that the average accuracy difference is stable within

6.25%. The method’s accuracy for classifying adult, child, and adult-child group was nearly 89%, while its

accuracy for identifying simultaneous entry and exit circumstances involving up to three individuals was

about 88%, demonstrating the framework’s potential and limitations.
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Table 1. Summary of Timing and Tracking Technologies in Museums

Space
coverage

cost

Visitor
coverage

cost

Privacy

protection
cost Accuracy

Applied or

experimented

in museums

Vision-based
Device-based Low High High High [19, 53, 56, 60, 69, 70]

Device-free High Low High High [25, 27, 28, 87]

Non-vision-based
Device-based High Moderate Low High [10, 21, 30, 33, 38, 49,

50, 59, 66, 67, 74, 85]

Device-free High Low Low Low Very few

2 RELATED WORK

2.1 Timing and Tracking Technologies in Museums

Digital technology gives museums new ways to engage with visitors, and the growth of IoT applications in smart

environments makes embodied and tangible interaction between visitors and objects in museum space a main

focus [47]. One of the most important technological needs for visitor management and services is understanding

the time and space distribution behavior of visitor flows [41]. Lanir et al. interviewed a series of museum stake-

holders and derived five needs for analysis of visitor behavior: visitors’ engagement at the room and exhibit level,

visitors’ flow and pattern between rooms, time analysis of individuals and small group visits, demographic and

time-based segmentations, and organized groups and educational activities [38]. In general, museum visitor be-

havior analysis requires collecting all-time records and spatial logs at optional granularities (room/exhibit-level,

group/individual-level, etc.).

Visit time is one of the most critical measurements in visitor study. In 1997, Serrell proposed that the indicator

of the visitor’s learning could be measured equally to the visit time and stops in front of different exhibits, helping

curatorial teams to better decide the exhibition size and media format [61]. In the study of Emerson et al., dwell

time was used as a measure of engagement and as a target for multimodal prediction tasks [20]. Time spent on

exhibits can be related to many variables. Johnson’s regression analysis involving over 50 variables on the visit

time of 501 visitors at six zoos found that the physical features of the exhibits and spaces were the main and

significant influencing factors [37]. Other studies also explored associations between visit time and visitor group

size, visitor demographics, museum fatigue, space and content design [4, 35, 64, 65, 71], and so on, which provide

empirical data-based recommendations for museum curation.

Time analysis is inseparable from the observation of visiting routes or locations, and IoT technology can re-

place manpower to achieve various scales of indoor sensing. The most traditional timing and tracking way is

paper-and-pencil. Empirical study has shown that reactivity effects are negligible when there are no further in-

teractions between subjects and observers after the cuing [12]. Besides, the individual-based observations could

facilitate further interviews to obtain more information for an explanation. However, it may pose concerns about

accuracy, labor cost, and influence on the visiting experience. Toward this end, the self-mapping of tourists may

serve as a proper method for leisure environment evaluation [52]. Additionally, time and tracking technologies,

such as video recording and wearable devices, are increasingly being employed for visitor observation [82], al-

lowing for more diverse study methodologies with larger samples. These automated methods are technically part

of the indoor human detecting, indoor positioning systems (IPS), and electronic travel aid (ETA) services,

among others. We provide a brief overview of the various possible timing and tracking technologies and specify

the categories to which the proposed method belongs.

We divide these technologies into four main categories based on whether they are vision-based and whether

the viewers must carry devices (device-based/contact versus device-free/contactless), as shown in Table 1, which

reflect differences in museum space coverage cost, visitor coverage cost, privacy protection cost, and accuracy.

Overall, when compared to visual methods, non-visual methods generally compromise accuracy for visitor
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privacy security, while contactless methods sacrifice space deployment cost for user coverage cost compared

to contact methods.

Vision-based device-based methods. It refers to the acquisition of egocentric views via a visitor’s cell phone,

wearable camera, or eye-tracking glass for individual-level positioning based on environmental images. Com-

bining with the study of emotion mapping, a smartphone that automatically took pictures was employed to

calculate the locations where the user’s mood changed throughout the tour route [60]. Eye-tracking devices

have also been used in field museum studies, providing finer-grained attention distribution data beyond localiza-

tion [19, 70]. User data can be utilized for more than just analysis; it can also be used to provide services. Some

image datasets of visitor perspectives in museums have been used in automatic object recognition [53]. Accord-

ing to vision-based recognition, Ragusa et al. proposed a framework for locating visitors in cultural sites by

tagging egocentric images from wearable Hololens and GoPros [56]. Styliaras et al. implemented the MuseLearn

Platform in Herakleidon Museum, where the system provided content recommendations for visitors viewing

the exhibition via mobile devices [69]. These solutions simply entail the pre-entry of exhibit and environmental

visual data without any changes to the cultural spaces. The approaches can surely produce high-quality data

on individual user activity, but not all visitors are ready to use guide tour gadgets, which opens the door to

contactless alternatives.

Vision-based device-free methods. In terms of device-free tracking in museums, surveillance cameras were

first explored. Brunelli et al. built a virtual museum simulation environment to demonstrate the possibility of

visual-based visitor tracking in large indoor environments [6]. Zabulis et al. designed a system based on camera

networks in an archaeological museum to enable multi-person tracking and interaction in front of a large-scale

display [87]. A single-camera multi-people tracking algorithm was proposed by Godbehere et al. and worked

well in museum hours regardless of various lighting conditions [25]. In addition to typical RGB cameras, Infrared

Radiation cameras can be employed in museum exhibits to recognize human behavior [28]. It is worth mentioning

that time of stay per capita and average concurrent users are two types of metrics used for assessing quality and

attractiveness. Therefore, a multi-regional head-counting system potentially provides a group-based perspective

different from the individual-focused observation. However, the camera-based methods are sensitive to angle

conditions and the obstruction by the exhibits, so they are mainly adopted in interactive installations [27] rather

than in large-scale audience research. Besides, ethical concerns make it difficult to disclose the statistical results

for public information services.

Non-vision-based device-based methods. It refers to connecting to a wireless signal for area positioning uti-

lizing a guide or other smart device carried by the audience. Since many visitors already have smart devices that

integrate wireless technology, device-based solutions are now more common. Moussouri and Roussos conducted

a case study of family visitors in the London Zoo, illustrating the feasibility of using smartphones in tracking

studies [50]. However, indoor environments such as museums demand greater precision in visitor tracking. A

number of Global Positioning System (GPS)-based indoor positioning approaches have been proposed [40].

Besides, Sakpere et al. provided a systematic overview of current indoor positioning techniques [58], which

include signal properties and positioning algorithms. The Angle of Arrival (AOA), Time of Arrival (TOA),

Time Difference of Arrival (TDOA), and Received Signal Strength Indication (RSSI) are examples of the

former, while Triangulation, Trilateration, Proximity, and Fingerprinting are examples of the latter. Mahida et al.

followed the flow of localization to sort out these parameters and algorithms in detail [46]. Brena et al. investi-

gated the types of indoor positioning technologies [5], which consist of Radio Frequency Signals (RF), light,

sound, and Magnetic Fields. WiFi, Radio Frequency Identification (RFID), BlueTooth, UWB, and so on, are all

RF-based technologies. Specifically for museum applications, Escuer et al. evaluated a variety of RF-based track-

ing methods currently in museums [21]. Verbree et al. tested two methods of locating visitors based on WiFi

devices at the Hubei Museum while discussing user concerns and legal issues regarding privacy protection [74].

Bluetooth data was instrumental in analyzing visiting patterns in the Louvre Museum [85]. While this strategy

involves the deployment of a certain number of wireless devices in advance in the space, it can balance privacy
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protection with service delivery. Signaling devices deployed in museum spaces can sense the location of visitors

via smart guides [33, 59] or smartphones [10, 30, 49, 66, 67], providing interactive content services and enhancing

the cultural experience of visitors. However, visitors who rent an electronic guide or connect a private device to

the network still make up a small portion of the overall audience.

Non-vision-based device-free methods. RF-based wireless communication devices generally consist of

transmitters and receivers (or tags and anchors). The signal types employed in the device-free approaches and the

device-based ways are the same; however, the latter chooses to fix one of the two communication devices and use

the other as portable equipment, whereas the contactless method fixes both in space and identifies possible sit-

uations based on changes in the signal caused by human activity. Therefore, contactless wireless sensing meets

the demands for massive and privacy-insensitive information sharing with minimal disruption to the visitors.

This obviously causes instability in recognition accuracy but can be compensated for by additional equipment,

robust feature extraction algorithms, machine learning, and so on. Among the available options for RF-based

contactless indoor tracking methods, WiFi is a more suitable medium considering universality, communication

distance, and costs. He et al. proposed a comprehensive review of WiFi-based contactless sensing, indicating

the prospects for its application in smart museums [32]. However, there are few frameworks designed and field

experiments in real museums that address the needs of visitor studies.

2.2 WiFi-based Contactless Flow Counting

In the early stage of wireless sensing research, RSSI was mainly used as a feature. Lin et al. firstly exploited radio

signal fluctuations for indoor automated people counting and explored the ability of single transmitter-multiple

receiver at a distance of 1.5 m to detect two people [42]. Doong deployed a transmitter and two receivers with

2m spacing, identifying the number of people passing by under the condition of two opposite directions [17].

Depatla et al. deployed two pairs of transmitters and receivers to estimate the speed and number of a crowd

when arriving/departing the area [13]. Compared to RSSI, CSI data has a finer granularity. Wu et al. leveraged

WiFi CSI to detect a human’s walking direction. The system related the direction of the dynamic target in the 2D

Fresnel zone model to the phase change and achieved single-person direction monitoring with a median error of

fewer than 10 degrees through a transmitter and two receivers [79]. These studies provide insight into human

flow counting and direction estimation of the wireless signal. Nevertheless, the receivers in these studies were

deployed in dispersed locations, which may not be suitable for spatially complex museum environments.

The development of artificial intelligence helps to further extract the deep features of the signal, resulting in

the diversity of perceptible objects and the simplification of device deployment. Combining CSI data and Deep

Neural Network (DNN), Doong further monitored the number of up to five passers-by using a transmitter with

one antenna and a receiver with three antennas [18]. Xiao et al. estimated queue size with WiFi via Support

Vector Machines (SVM), identifying queues of one to four people through a similar device with about 90%

accuracy [81]. Zhou et al. innovatively leveraged the Doppler Frequency Shift (DFS) feature of WiFi signals

to identify more complex cases in queues, i.e., a continuous flow composed of different subflows [91]. These

efforts integrate wireless sensing and machine learning, broadening the horizon of WiFi-based flow counting.

However, they do not imply both flow size and direction recognition for the time being, and our system reduced

one receiving antenna based on this deployment.

In terms of function, the closest to our study is Yang’s work [83, 84]. The system used a transmitter and

2 adjacent receiver antennas, employing WiFi phase difference and the CNN model to achieve bi-directional

head counting. The deployment placed the LoS perpendicular to the door, taking up a certain area in the room

to some extent, so it may not be appropriate in public areas where exhibits need to be designed for placement.

Our deployment still brings people through the LoS, because it is more in line with the museum, while also

considering the case in almost completely different sites and system upgrades. We further experimented with

the system’s potential to identify the visitor type, and the simultaneous entry and exit of the targets.
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Fig. 2. The RX signal consists of multiple paths.

3 PRELIMINARY

This section first introduces the format of the collected WiFi data, argues why dynamic targets cause changes in

the signal flow, and then models the behavior of people crossing the link based on the Fresnel zone model.

3.1 Channel State Information

Considering both transmitter and receiver usually have more than one antenna, the antenna of the transmitter

is abbreviated as TX and that of the receiver is abbreviated as RX. Figure 2 illustrates a TX-RX pair serving as

the basic WiFi-based IoT device. The support of orthogonal frequency-division multiplexing (OFDM) and

multiple-input multiple-output (MIMO) enables WiFi data to be transmitted as multiple subcarriers between

different antennas. TX sends packets to RX continuously, and a CSI matrix can be extracted by the Linux 802.11n

CSI Tool [31]:

H (i, j ) =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

h (1,1) h (1,2) · · · h (1,S )

h (2,1) h (2,2) · · · h (1,S )

· · · · · · · · · · · ·
h (T ,1) h (T ,2) · · · h (T ,S )

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, i = 1, 2, . . . ,Ntx , j = 1, 2, . . . ,Nr x , (1)
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where Ntx and Nr x represent the total number of TX and RX antennas, respectively, H (i, j ) is the CSI stream from

the ith TX antenna to the jth RX antenna, consisting of S subcarriers with a length of T packets, andh can be

expressed as

h = |h |e j∠h , (2)

where |h | and ∠h represent the amplitude and the phase, respectively.

As Figure 2(a) shows, the collected CSI stream is a mixture of signals from many different paths, which can

be summarized into three categories: the direct signals on the LoS path, the reflection and diffraction signals

caused by the dynamic people, and those caused by other static objects [8], e.g., walls, exhibits, and so on. When

visitors cross the LoS vertically, the covered direct and static signals as well as the changed dynamic ones cause

a fine-grained fluctuation in the amplitude and phase of all subcarriers.

3.2 Fresnel Diffraction Model

The Fresnel zone is an ellipsoidal region directly surrounding the LoS path. Wang et al. first introduced the model

to the indoor environment for respiration detection via commodity WiFi [76], and Xiao et al. enhanced the stabil-

ity of the human flow detection system by using the changes caused by people entering/leaving the Fresnel zone

from different directions [81]. Considering the influence of the Fresnel diffraction, References [51, 89] studied

the amplitude changes induced by human activity through the LoS. The Fresnel zones can be considered as a set

of nested ellipses in the top view, the innermost of which is the First Fresnel Zone (FFZ). The boundary of the

nth Fresnel zone can be expressed as [8]

|TX ,Qn | + |Qn ,RX | − |TX ,RX | =
nλ

2
, (3)

where Qn is the point on the boundary of the nth Fresnel zone, and λ represents the wavelength of WiFi.

The signal is dominated by reflection phenomena when the moving target is outside the FFZ and by diffraction

phenomena when it is inside the FFZ as Figure 2(b) shows. The signals reach RX from both sides of the object,

contributing to the gain:

Sdif = A(vf ront )e−2jϕdif , f r ont +A(vback )e−2jϕdif ,back , (4)

A(v ) =
1 + j

2

∫ ∞

v

e
−jπ x 2

2 dx , (5)

where vf ront = hf ront

√
2(d1+d2 )

d1d2
and vback = hback

√
2(d1+d2 )

d1d2
are the Fresnel Kirchhoff Diffraction parameters,

ϕdif ,f ront andϕdif ,back represent the phases of diffraction signal from each side, andd1 andd2 means the vertical

distance from TX and RX to the visitor’s walking path, respectively [51]. The target crossing the FFZ at a uniform

and relatively low speed will cause a weakening of the direct signal, on the one hand, and the strengthening of

the diffraction signal, on the other hand, as Figure 2(c) depicted. Although the fluctuation durations of different

subcarriers induced by human activities were similar, the specific changes were subtly different, thus distinct

subcarriers can be used as the basis for further feature mining.

3.3 Challenges and Verifications

This section discusses the challenges we need to tackle before it works:

• Finding uniqueness of head-count patterns from raw CSI. A motivation experiment was conducted

with two volunteers. We set the case of TX on the right side of the volunteer as the direction In and the

opposite direction as Out. Although the identification can be achieved using a template-based dynamic pro-

gramming approach, not only were there outliers in the amplitudes, but it was difficult to distinguish small

differences, e.g., 1 people and two people in the case of Figures 3(a) and 3(b). Visitors’ physical traits can be

a hindrance in calculating the head count, but they can also be used to discern demographic segmentations.
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Fig. 3. The amplitude of subcarrier 1 in different situations.

• Looking for direction-related clues in the signal. Head-count identification is useless if the system can-

not judge the flow’s direction correctly. Although the amplitude of a single RX should be symmetrical based

on the Fresnel zone model, the actual received signal for a human model crossing the zone is asymmet-

ric [51] due to the asymmetrical front and back of the body. However, no matter which direction a person

passes, it is always the forehead that approaches the link first, so a single RX antenna cannot theoretically

identify the direction between Figures 3(a) and 3(c). Even though the asymmetry of the antenna orientation

map and the environment may cause subtle nuances in direction, it is considered that they are not stable in

all cases. When multiple users move in and out simultaneously, the problem becomes more complicated.

• Reducing training time costs when new situations are introduced. Each fixed-location device

may face the possibility of adding new samples later to increase the diversity of identification, which

significantly adds the time cost. Specifically, if the system is trained to recognize up to three people and

later wants to increase to four people, then the network structure has to be adjusted and fully retrained.

4 SYSTEM DESIGN

4.1 Overview

In response to the challenges of Section 3.3, the architecture of the proposed system consists of six components

(see Figure 4):

• Data collection: TX is set to transmit packets at a high frequency to RXs, and the raw CSI data from two

RX antennas (abbreviated as RX1&2) is leveraged.

• Signal pre-processing: The Hampel filter is utilized to remove outliers and the Discrete Wavelet Trans-

form (DWT) is used to roughly extract the main features of the amplitudes. Afterward, the variance is

calculated in real time with a sliding window to segment the samples when visitors pass instantly. The

segmentation of RX1 is applied directly to RX2 to ensure the asynchronous of the two antennas in time.

• Crossing head-count/direction/visitor-type detecting: We use the deep-learning method to enhance

the robustness of the system without feature engineering. After pre-processing the samples, a two-channel

CNN model is presented to further extract the features and classify the head count and direction. Since

different body shapes mask the signal differently, the model is expected to learn about the visitor types.

• Upgrade module: The parameters of a trained model can be reused for training in new situations with

transfer learning.

4.2 Signal Pre-processing

To overcome the interference caused by the environment and hardware, the input signals are first passed through

the Hampel filter1 to remove outliers. Figure 5(b) illustrates the outcome of the Hampel function with Figure 5(a)

1https://ww2.mathworks.cn/help/signal/ref/hampel.html.
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Fig. 4. System overview.

Fig. 5. Denoising the amplitude of subcarrier 1 when a target passing.

as input. It can be seen that the outliers are eliminated and the diffraction part remains intact. The generic step

of DWT splits the signal into an approximation coefficient vector and a detail coefficient vector [1]. Since the

waveform of the signal is mainly represented by the low-frequency part, DWT is leveraged to reduce the signal

on multiple scales and obtain the approximation coefficients. Specifically, the signal is decomposed to six levels

with the Daubechies 3 wavelet, which performed well in eliminating the residual noise from the fingerprint-

induced sonic effect [57]. The system reconstructs the approximation coefficients for levels 4–6, respectively,

from the decomposition structure, and then the three-layer approximation coefficients are added and smoothed,

as Figure 5(c) shows. The processed amplitudes in different cases illustrate the basis for identifying the number,

direction, and type of people.

As the signals obtained in practice are continuous, the automatic cutting of samples with visitor traffic is

necessary for real-time detection. As illustrated in Figure 6, a sliding window moves from left to right by the

sample point on the sub-figure above, and the corresponding variance change is shown below. The movement

of people causes the growth of variance, and the superposition of DWT on the amplitudes helps to reinforce this

difference. A proper threshold value should be selected, based on which it is possible to find the corresponding

approximate time region of each sample. We record the first and last sample point above the threshold in each

sample, and a length of the time window is added on both sides of the region to ensure that the target is fully

captured.
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Fig. 6. Movement segmentation with a

sliding window.

Fig. 7. The CNN structure.

4.3 Crossing Head-count Detecting

After getting the cut signal, the challenge is to ascertain the size of flow it corresponds to, which specifically

means constructing the unique relationship between visitor traffic and CSI amplitudes. Deep learning algorithms

are used to track the delicate head-count-related variables, because the data received from commercial WiFi

equipment is highly unstable due to transceiver asynchrony, hardware noise, and rich multipath [23]. CNN is

a network that can automatically extract local spatial information from a large number of training samples,

abstract them into high-dimensional features, and perform classification. A CNN structure generally includes

convolution layers, pooling layers, dropout layers, flatten layers, fully connected layers, and so on. Depending

on the moving direction of the kernel, it can be classified into 1D, 2D, and 3D types. The first two types of CNNs

are commonly used in signal classification problems, for the signal contains both time-domain features and

frequency-domain features. Specifically, mapping a 1D signal to the frequency domain by short-time Fourier

transform (STFT) results in a 2D time-frequency distribution map. Some studies used these spectrograms for

2D-CNN identification [84, 91]. Although there are studies that put the pre-processed feature matrixes into the

2D neural network because of the similarity in data structure [29, 63], 1D-CNN is compatible with array signal

processing [39, 48], leading to smaller computational cost and higher performance in simple classification [44].

Therefore, inspired by Reference [86], a two-channel 1D-CNN model is proposed as Figure 7. It first extracts the

features from each of the two antennas independently using two separate CNN models and then merges them for

classification. Before the samples are put into training, linear interpolation is leveraged to keep the size uniform.

The sample size after interpolation is T × S × 2 (see Figure 7), which can be expressed as

Xi = [XRX 1 = fpr e (abs (H (1,1) )),XRX 2 = fpr e (abs (H (1,2) ))], (6)

where T means the specified length of time, S means the number of subcarriers, and fpr e (·) means the pre-

processing and interpolation of the amplitudes, respectively. For each Xi there is a corresponding yi as a label.

The label denotes the real head count. The samples of two RXs are fed in two independent feature extractors,

respectively. The output of feature extractors serves as the deeper features:

FRX 1 = fF E1 (XRX 1,θF E1), FRX 2 = fF E2 (XRX 2,θF E2), (7)

where θF E1 and θF E2 mean the parameters in each feature extractor. The two deep features are concatenated for

classifier:

ŷi = fC (FRX 1 ⊕ FRX 2,θC ), (8)

where θC means the parameters in the classifier, and ŷi means the prediction of the model based onXi , θF E1, θF E2,

and θC . The length of yi and ŷi is the max number of identifiable concurrent people during data collection. yi is
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Fig. 8. The denoised amplitudes of subcarrier 1 in RX1 and RX2 when different number of targets passing in the opposite

directions.

the one-hot encoding vector of the category and the subscript of the maximum value in ŷi means the predicted

result. The categorical cross-entropy loss is calculated to reflect the accuracy of the forecast:

Loss (θF E1,θF E2,θC ) = −
|X |∑
n=0

K∑
k=0

y(i,k )loд(ŷ(i,k ) ), (9)

where |X | means the total number of the input samples and K means the number of corresponding categories,

equal to the length of the predicted label. The purpose of iterative training of CNN can be expressed as

(θ̂F E1, θ̂F E2, θ̂C ) = arg min
θF E1,θF E2,θC

Loss, (10)

where θ̂F E1, θ̂F E2, and θ̂C represent the updated network parameters. Ideally, iteration of the parameters mini-

mizes the loss, so the predictions become increasingly accurate with training.

4.4 Crossing Direction Detecting

Following the estimation of visitor traffic, it needs to determine the direction of each crossing event for achieving

accurate cross-regional head counting. The direction identification module faces the challenge of signal sensi-

tivity similar to the previous section, and both parts can be executed in parallel. Figure 8 plots the processed

amplitudes of two RXs on a receiver when different numbers of targets cross the LoS vertically. As shown in

Figure 9, since the line of the two RXs and the direction of visitor routes are parallel, even the RXs are close to

each other, changes in one RX antenna generally precede the other in time, which remains relatively stable in

the case of up to four people. Therefore, the order in which the fluctuations of the two antenna signals occur

may give more basis for the direction identification beyond the effects of environmental and hardware asym-

metry. It is thus worth noting that the RX1 signal segmentation findings must be applied directly to the RX2

signal to ensure the time difference between the two antennas, rather than splitting the two antennas separately.

Simultaneously, the activity of numerous targets increases the complexity of amplitude fluctuations, rendering

manually derived features such as wave-valley time disparities invalid [see Figures 8(c) and 8(d)]. As a result, in

theory, the identical structure of the two-channel CNN can be used for direction determination. In the network

used to identify the direction,yi and ŷi denote the true and predicted label of direction, respectively (In and Out),

and both are one-dimensional vectors of length 2 (K = 2).

4.5 Visitor Type Detecting

The importance of segmented visitor research keeps rising, and demographic segmentation is a classic classifica-

tion principle for museum visitors. While Falk [22] argued that demographic variables alone may not provide the

best explanation for museum service enhancement strategies, targeting segments such as children exceptionally
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Fig. 9. The devices

in experiments.

Fig. 10. Comparison of signal

changes induced by an adult

and a child.

Fig. 11. Transfer learning when identifiable cases increase.

seems to be of greater practical relevance [2]. Non-visual-based wireless sensing methods ensure privacy but

also somewhat lose the opportunity to learn more about the characteristics of the audience. However, it is still

possible for the signal changes to describe the approximate body state. [51] compared the amplitude changes of

the barrel and the dummy model across the link. As in Figure 10, our results also show the difference between

a child and an adult when crossing the LoS. Therefore, with similar model training, the system can classify the

types of visitor traffic in more detail. The module was examined in Experiment 2.

4.6 Transfer Learning

The ideas of transfer learning are proposed to overcome the problem of machine learning migration between

different knowledge domains, one of which is pre-training and fine-tuning. It has been successfully applied in

device-free user identification to reduce the retraining time when the number of users grows [34]. We use a

similar approach to verify its effectiveness in flow counting. Since the procedures of shallow feature extraction

may be comparable, if a trained CNN model works well in one configuration, portions of the model’s parameters

can be frozen and reused for training in others. The partial fixation of parameters results in a reduction in training

time. The process of transfer learning can be presented as

(θ̂tr ainable ) = arg min
θtr ainable

Loss, (11)

where θtr ainable represents the updateable parameters in pre-trained CNN. Figure 11 shows how pre-training

and fine-tuning are applied in the upgrade module. Assume there is a trained CNN model adequate for a three-

person bi-directional head counting at a given place with a particular number of samples. When the recognition

capacity has to be increased to four people, the old data set and the new samples can be mixed for retraining. In

this study, we trained the transfer learning model on the modified final fully connected layer. Existing feature

extractor parameters are fixed, and only the classifier’s exit number needs to be increased. By fine-tuning the

last layer of a pre-trained CNN, it avoids retraining the entire network, reducing training time and boosting

parameter reusability.

5 EXPERIMENT 1

5.1 Experimental Setup

We used a Xiaomi AC1200 router as the transmitter and a mini-pc equipped with Intel 5300 WiFi NIC as the

receiver. The router operated on the 5 GHz frequency range, with a distance of 0.15 m between the two RXs.

According to References [84, 91], a high sampling rate generally enables an increase in accuracy, therefore the

mini-pc was set to receive CSI packages every 0.002 s. Three independent experiments were conducted in the
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Fig. 12. Different scenarios with different deployments in Experiment 1.

college’s heritage exhibition space and two sites in the Zhejiang University Museum of Art and Archaeology,

respectively. The exhibition space was mainly used for artifact storage, facilitating strict control of variables. To

minimize the impact on other visitors, the museum’s field experiments were held on weekdays. As the testbeds

shown in Figures 12(a)–12(c), different deployments were applied according to the features of the three environ-

ments. The distance between transmitter and receiver was 3.60 m in the exhibition space, 4.10m in site 1, and

2.52 m in site 2 of the museum. According to Equation (3), the short axis of FFZ was 0.23 m, 0.25 m, and 0.19 m in

the three environments. In consideration of the possibility of the younger audience, the height of the two devices

was fixed at 0.85 m.

Ten volunteers composed of seven females and three males were invited to participate in the experiment. The

volunteers were between 1.55 m and 1.77 m in height. A total of 1,080 samples were collected, as summarized

in Table 2. According to our preliminary observation at the museum, no more than three people generally pass

through the regional border at the same time, thus the data for four types of head count × In/Out = 8 categories

was collected. Data in the three sites were sampled on three distinct days, and the volunteers were not exactly

repeated each time. The experimental scenarios for different cases are shown in Figures 12(d)–12(g). The volun-

teers were only asked to pass through the LoS in the required direction as much as possible at the same time with

other companions. A researcher was in the vicinity of the receiver, delivering instructions at the start and end

of each sample collection. There were no further prerequisites for volunteers aside from those specified above.
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Table 2. Summary of Data Collection in Experiment 1

Experimental

site
Participants

One person Two people Three people Four people
Total

In Out In Out In Out In Out

Exhibition space Six volunteers 40 40 48 48 48 48 48 48 368

Museum-site1 Four volunteers 40 40 48 48 48 48 48 48 368

Museum-site2 Four volunteers 40 40 48 48 48 48 36 36 344

They were allowed to talk, watch their smartphones, and freely determine their speed, stride, and arm swing

during the walk.

In the exhibition space, we chose a volunteer at random to act as an extra audience for half of the samples,

simulating possible interference in real life. As long as the interferer did not cross the LoS, he was free to walk or

stop in the experimental area at any time during the experiment. To further ensure the diversity of the samples,

one-, two-, three-, and four-people cases were, respectively, derived from 8, 12, 24, and 48 different combina-

tions (such as changing the selection of targets and interferer in different rounds, altering the order of relative

positions, etc.). In the museum, we still collected the volunteers’ behavioral data out of concern for other audi-

ences’ experiences, but there were also random disturbances from visitors around the experimental environment.

Figures 12(h)–12(j) illustrates the potential interference that was deliberately designed or randomly appeared in

the experiments. Similarly, in site 1 the four cases were derived from 4, 4, 12, and 24 different combinations, and

for site 2 there were 4, 4, 12, 18 ways to combine, respectively.

In terms of movement segmentation, suitable variance thresholds were confirmed according to the data in

different environments. Only 2 of over 1,000 samples were not detected. Since the undetected samples are also

real data, they were directly adopted as samples without segmentation. Each RX sample included 30 subcarriers,

and the standard duration of linear interpolation was set to 1,000, which is equivalent to 2 s for the experimental

sampling rate. The CSI streams were extracted and pre-processed with MATLAB R2016a, and the CNN model

was constructed and trained based on Tensorflow and Keras 2.7.0.

5.2 Results

Overall performance. K-fold cross-validation was performed to assess the validity of the method. The value

of K was set to 5, which means the data set was randomly divided into five mutually exclusive parts. In turn,

four of them were used as a training set and the remaining part was used as a testing set. The best accuracy of

the trained model on the testing set was recorded for each round. After five repetitions, the mean and standard

deviation of the accuracies were calculated as a measure. The CNN parameters were set as follows: batch size =

10, learning rate = 0.001, Conv1D filters = 64, kernel size = 10, pool size = 2, dropout rate = 0.2, dense units =

256, 128. For each site, each sample was normalized with the maximum and minimum values of training data

as intervals. Figure 13(a) illustrates the proportion of test samples with accurate and incorrect predictions in

different environments. In the exhibition space, the average recognition accuracy for head-count detection was

94.84%. The accuracy of counting dropped to 88.32% and 86.33% in the museum’s 2 ground situations, respec-

tively. However, approximately 74.43% and 100% of the forecast errors were only 1 person away from the ground

truth. The maximum standard deviation of cross-validation for all sites was 4.05%. It demonstrates that the pro-

posed strategy worked in a variety of museum environments/deployments and that neither the time of collection

nor the presence of other visitors in the area had a significant impact on the outcomes. From Figure 13(b), the

model rarely missed the determination of 1 target, but the two-, three-, and four-target cases were more likely to

cause confusion. Integrating all samples for cross-validation, the accuracy of head-count identification reached

80.27%, which shows that the environmental differences affected the generalizability of feature mining (for more

discussion, see Section 8.1).

Furthermore, the average accuracy of direction recognition in the 3 environments was 99.73%, 91.84%, and

99.13%, respectively, with 95.09% for integration. The maximum standard deviation of cross-validation for all
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Fig. 13. The recognition accuracy of head count.

Fig. 14. The recognition accuracy of direction. Fig. 15. Performance of transfer learning in three

environments.

sites was 2.38%. Figure 14 showed the specific performance, and the accuracies were similar in both directions.

The proposed method yielded relatively low accuracy in direction detection at museum-site 1, most likely due

to the multipath effect produced by the router’s closeness to the whole wall as Figure 12(b).

Transfer learning when the identifiable maximum number of people increases. Following the as-

sumption in Section 4.6, the migration performance of the three or four people was verified for each of the three

settings. For each environment, the models for the three-person case with cross-validation were saved. The out-

put of the pre-trained three-person model’s penultimate layer was spliced into a modified classifier with 4 exits.

The original training set and the fourth person’s training samples were used to update the weights of the new

model. To expedite convergence, the learning rate was set to 0.01. Fivefold cross-validation accuracy and the

average training time per epoch are shown in Figure 15. Overall, although the effectiveness of fine-tuning was

limited by the original model’s accuracy, the transferred model retained an accuracy decrease of 6.25%, 4.28%,

and 4.52% in the three sites while saving around 75.31% of the average training time. Taking exhibition space

as an example, for the same training/testing set division on the data of four people, the model with random

initialization achieved an average accuracy of 95.94% at an average time cost of 2.53 s/epoch. However, if the

pre-trained three-person model with an average accuracy of 96.69% was partly used for initialization, the average

accuracy was maintained at nearly 90% while requiring only 0.64 s/epoch.

6 EXPERIMENT 2

Based on the implementation of the elementary functionality, the goal of Experiment 2 is to evaluate the system’s

effectiveness in recognizing visitor types. The science museum is a typical example, where parents and children

serve as the main visitor groups. It is expected that variation in the physical characteristics of adults, children,
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Fig. 16. The scenario and deployment in Experiment 2.

and adult-child groups may differently affect the fluctuations of the signal and thus function as a cue for visitor

type identification.

6.1 Experimental Setup

We selected an open space in front of an interactive installation that was closed to the public due to the epidemic

in the Zhejiang Science and Technology Museum, and, unlike Experiment 1, we recruited parent-child volunteers

who visited the site as volunteers. The distance of the transmitter-receiver pair was 2.73 m (the short axis of FFZ

was 0.20 m). Prior to the start of the experiment, the researchers explained the experimental design, the content

of the data collected, the safety of the signal, and the ethical norms of the study to the interested visitors in the

form of posters and oral presentations, inviting them to participate in one of the three experimental levels (adult,

child, and adult-child group). Each experiment consisted of 15 round trips in and out of LoS and lasted about

10 minutes (see Figure 16). The relative positions of the adult and child in the group were also noted for balance

when sampling. The sample size may be reduced depending on the interest of the children, and all the volunteers

received a souvenir after the experiment. A total of 6 adults, 10 children, and 10 additional adult-child pairs

participated in the data collection, and their height and weight are shown in Figure 17. Adults’ age ranged from

24 to 59 years old, and children’s age ranged from 2 to 9 years old. Because of the age constraints at the time of

subject recruitment, there were more substantial disparities between the body postures of adults and children.

Aside from that, there were minor variances between groups and singles, and the Body Mass Index among adults

and children ensured diversity. In addition, 55 free samples were collected when no one was passing by, and a

total of 816 samples were collected as listed in Table 3.

Experimentally, it was found that relying solely on detecting the variance value of the sliding window tends

to cause incorrect segmentation. The selected threshold missed only one child sample while incorrectly detect-

ing 10 unaccompanied samples. It was possible that other factors also caused large fluctuations. Therefore, the

unidentified samples (including the free ones) were linearly interpolated and then fed into the CNN training.

The experimental setups except for the above description were the same as Experiment 1.

6.2 Results

Overall performance. Visitor type classification training was performed using fivefold cross-validation for

free, child, adult, and group cases. The mean value of five times recognition accuracy was 88.97%, the standard de-

viation was 3.59%, and the confusion matrix was summed as shown in Figure 18. Unlike laboratory experiments,

the volunteers, especially children, did not always follow a similar walk each time when sampling, which created

a challenge for machine learning with small samples. Overall, a number of free samples were still recognized as

passages, and the adult-child groups were easily confused with the single-person samples.
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Fig. 17. Physical data of the volunteers in Experiment 2. Fig. 18. The confusion matrix of visitor type classification.

Table 3. Summary of Data Collection in Experiment 2

Visitor type Participants In Out Total

Child 10 volunteers 145 146 291

Adult 6 volunteers 90 90 180

Adult-child group 20 volunteers 145 145 290

Free — 55 55

The mean value of recognition accuracy of direction detection was 91.46%, and the standard deviation was

1.93%, of which the average values of In and Out identification accuracy were 90.81% and 92.11%, respectively.

7 EXPERIMENT 3

Due to the museum’s broad aisle spacing and diverse exhibition routes, simultaneous entry and exit is highly

likely, which has not been extensively examined in relevant studies. Experiment 3 was conducted to demonstrate

if CSI data could differentiate more complex circumstances. When utilized for regional head counting, some cases

can be merged when numerous persons enter and exit at the same moment, and the upgrade module can also

add these scenarios to the system.

7.1 Experimental Setup

Experiment 3 recruited three volunteers to conduct data collection in an empty art gallery of the school. The

distance of the transmitter-receiver pair was 2.98 m (the short axis of FFZ was 0.21 m). All volunteers were

female university students, 1.58 m, 1.60 m, and 1.65 m in height, respectively. The most complex combination in

the three-person case and the factor of speed were considered, some of which are shown in Figure 19. Before the

experiment began, the researcher measured the volunteers’ gait speed in self-perceived fast and slow situations

and obtained the average speed of 1.178 m/s and 0.78 m/s, respectively. The volunteers followed a similar pace in

the formal experiment. Taking into account the simultaneous entry and exit, there are two, four, and eight cases of

one- to three -person combinations, and for multi-area visitor counting, we further categorized them into the nine

cases as in Table 4. Fifteen samples were collected in each level for the single target and 18 samples in each level

for the multiple targets case, for a total of 492 samples. The relative positions of multiple targets were balanced.

The experimental setups except for the above description were the same as Experiment 1. The selected variance

threshold missed a sample of the single target, which was also linearly interpolated and put into the dataset.

7.2 Results

Overall performance. Fivefold cross-validation was likewise used to evaluate the nine-case classification.

The classification mean accuracy and standard deviation were 88.21% and 3.42%, respectively. The sum of the
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Fig. 19. The scenario and deployment in Experiment 3.

Fig. 20. The confusion matrix of classification in Experiment 3. Fig. 21. Transfer learning in Experiment 3.

Table 4. Summary of Data Collection in Experiment 3

Speed 1-in 1-out 2-in 2-out 1-in-1-out 3-in 3-out 1-in-2-out 2-in-1-out Total

Fast 15 15 18 18 18 × 2 18 18 18 × 3 18 × 3 246

Slow 15 15 18 18 18 × 2 18 18 18 × 3 18 × 3 246

testing set confusion matrices is shown in Figure 20. Among the samples with wrong predictions, 70.69% had a

deviation of one person and 29.31% had a deviation of two persons.

Transfer learning when the identifiable maximum number of cases increases. To evaluate the opti-

mization effect of the upgrade module, the originally proposed model was first trained with three users In and

Out for a total of six cases, and the average training time and accuracy were measured as a baseline. The pa-

rameters of the model were frozen and the last classifier was structurally modified and trained for 6+c cases

(c ∈ [1,3]). As shown in Figure 21, similar to the results of Experiment 1, transfer learning significantly reduced

the training time. However, the compatibility capability of the original model was limited when the number of

updated cases was too high. When c = 3, although fine-tuning saved around 53.44% of the time, it came at the

cost of over 10% average decrease in accuracy.

Comparison of different signal features. To further discuss the possibility of simplifying the device, the

efficiency of a single antenna was examined. Besides, since the amplitude ratio of the array antennas in hard-

ware remained constant in the unoccupied state, the features of the two antennas can be combined during pre-

processing. The ratio of the two RXs’ absolute values was found in the segmented area, afterward, the outlier

removal, hop elimination, and DWT were performed sequentially. We thus compared the proposed method with

a single-input CNN of other features in the five sites using fivefold cross-validation (see Figure 22). The results
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Fig. 22. Comparison of performance with different signal features.

reveal that a single antenna could provide astonishing accuracy, but that it was not stable in all experiments. The

amplitude ratio had some advantages in direction identification, however, the instabilities of one antenna may

impair feature engineering (as Experiment 3). Overall, the proposed approach retained a relative advantage in

most cases, though the findings show that there is still room for simplified or expanded deployment options.

8 THE POTENTIAL AND LIMITATIONS OF CONTACTLESS SENSING IN MUSEUMS

There is much more to consider in a real museum setting. The problems of intensive labor, the effects of front-to-

back distance, and more potential applications of device-free sensing were discussed, providing an outlook for

future work on the existing problems.

8.1 Cross-domain Detecting

Intensive labor is one of the impediments to wireless contactless sensing in smart space applications. Machine

learning methods often require a large number of samples, and since museums are social public spaces, it is more

difficult to collect data for training. This requires the model to exclude environmental or personal factors from the

feature vector as much as possible to ensure that the system trained in the source domain can be directly applied

to other target domains. In our experiments, even though the samples in each environment have been normalized

independently, it was difficult for a pre-trained model to guarantee recognition across environments, even for

the most basic binary classification. Some signal fluctuations were discovered to differ from the theoretical ones

in Figure 8 to a certain extent, probably due to the proximity of the router to the wall, excessive masking of the

FFZ, or other personal, environmental, and hardware influences. Although pre-training and fine-tuning can save

time cost, manual labeling and sampling for each monitoring site are difficult to avoid.

To reduce the workload of manual labeling, Domain Adaption (DA) [24] and its variants [9, 15, 36] have

been involved in minimizing environmental factors in signal abstraction. DA learning adds a discriminator to

judge the domain of the deep feature from the feature extractor. In the training phase, the source domain sam-

ples with labels and the target domain samples without labels enter the feature extractor, and only the fea-

ture vectors of source domain samples enter the classifier, while those from both domains enter the domain

discriminator. The optimization goal is to minimize the classifier loss and maximize the discriminator loss so

that the feature extractor performs basic classification while deceiving the discriminator as much as possible to

achieve migration across environments without manual labeling of the target domain samples. We selected 2

environments with relatively similar signal characteristics and used the DA model to implement transfer learn-

ing for direction recognition from museum-site 2 toward the exhibition space. The code was adapted from

https://github.com/Daipuwei/DANN-MNIST, where we replaced the network layers with a structure similar

to the one in this article. As Figure 23 shows, the feature extractors fused data from both environments and

achieved a direction recognition accuracy of 93.33% for unlabeled target domain samples. However, between
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Fig. 23. Domain adaption learning from museum-site

2 to exhibition space.

Fig. 24. The denoised amplitudes of subcarrier 1 in

RX1 and RX2 when two targets passing with a 0.5 m

front-to-back distance.

datasets from other sites, adversarial training played a minor role, which could be attributed to large differences

in surroundings and volunteers, or insufficient manual signal feature extraction. Moreover, DA still necessitates

a sizable number of samples from the target domain.

To further reduce manual sampling costs, the most efficient method is to extract stable features that do not

require extra training. Zheng et al. calculated the domain-independent feature for zero-effort cross-domain ges-

ture recognition through multiple wireless links [90]. Data augmentation is another common method to cope

with data scarcity. Um et al. proposed various data augmentation methods for wearable sensor data and applied

them to enhance the classification performance of motor states for Parkinson’s disease patients [72]. Generative

Adversarial Network (GAN) allows the generator to produce simulations close to the real data, thus increasing

the number and breadth of signal samples [3, 7]. The meta-learning framework could also be used to mitigate

excessive training data collection. In machine learning, meta-learning tries to create models that can swiftly ad-

just to new scenarios that have never been trained before, allowing for few-shot activity and speech recognition

adaptation [16, 26].

8.2 The Impact of Front-to-back Distance

Since in practice there may be a small front-to-back spacing between two people passing through the link, we

must determine the maximum front-to-back distance at which the method works. An experiment was conducted

in an empty office with a 2.0 m distance between the transmitter and receiver. Two volunteers held both ends

of the tapeline to stabilize the relative distance. Figure 24 reports the processed amplitudes caused when the

front-to-back distance between the two people was 0.5 m. Even though the visitors were separated by 0.5 m,

the features of the two antennas in direction were still kept. Considering the effect of front-to-back spacing, the

proposed system requires a balance between the length of the sliding window used for segmentation and the

addition of new cases.

8.3 Other Possible Applications of Contactless Sensing in Museums

Experiment 3 also tried a rough binary classification of walking speed. The mean value of recognition accuracy

of speed classification was 87.59%, and the standard deviation was 2.68%, of which the average values of fast

and slow identification accuracy were 89.44% and 85.75%, respectively. For a single target, calculating the time

difference that causes fluctuations at the edge of the FFZ may help to measure the velocity. Although the trait of

walking speed-induced signal changes for multiple targets is difficult to interpret, the result provides preliminary

evidence that the presented method may be useful for assessing museum fatigue or detecting the elders.

Another future work is to validate and improve more applications of the WiFi-based contactless systems in

the museum scene. The same commodity WiFi devices worked well in activity identification [77, 78], gesture

recognition [45] and route tracking [54], and so on. According to embodied cognition theory, in addition to
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body position, visitors’ gestures may also be variables in understanding their appreciation of art and social

processes [68]. There have been studies that extend the fine-grained detection of a single person to several

targets [73, 88]. These studies on the prevalence of WiFi perception are expected to promote museum services

and visitor research.

In addition to the discussions above, there are some other inadequacies in the study. First, the relatively small

sample size is insufficient to adequately explain the effects of more variables including spatial layout, WiFi wave-

length and TX frequency, walking angles and finer-grained speeds, items such as backpacks carried by visitors,

and so on. The identification of some of these variables may provide additional low-cost and efficient insights

for museum studies. The precise distinction between the occupied and unoccupied states is also not thoroughly

discussed. Furthermore, because there is no fixed relationship between the complexity of the CNN structure and

its recognition efficiency, the model design may need to be tweaked as training data grows more complex. Due

to a lack of model interpretability, it is unknown to which extent the signal features of the demonstration were

utilized in the machine learning session.

9 CONCLUSION

This article presents and tests a WiFi-based contactless multi-area visitor counting system that adapts to the

museum environment, illustrating the potential and limitations of contactless sensing methods applied to the

visitors’ time-space distribution behavior tracking in cultural spaces. Extensive experimental results show that

the amplitudes of two receiving antennas can be effectively related to the size, direction, and type of visitor traffic

with a two-channel CNN, and have the potential to be used for discriminating more complex situations to some

extent. In comparison to previous research on WiFi-based contactless flow counting and direction recognition,

our work considers compatibility with visitor studies and therefore delves further into device flexibility and

improves scalability through transfer learning, while exploring the identification of visitor types as well as

simultaneous entry and exit. The limitations of cross-domain recognition and the front-to-back distance of visi-

tors are discussed with possible solutions. Adding samples, improving the robustness of different environments/

deployments, and more effective detecting methods are still needed for the eventual goal of realizing it in

museums.
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