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ABSTRACT

We present MetaAl, a novel wireless computing paradigm that in-
tegrates neural network computation directly into wireless signal
propagation. Unlike traditional approaches that treat wireless chan-
nels as mere data conduits, MetaAl transforms them into active
computing elements through programmable metasurfaces, enabling
concurrent data transmission and neural network processing. By
leveraging the inherent linearity of both wireless propagation and
neural networks, our design resolves the fundamental mismatch
between sequential wireless transmission and parallel neural com-
putation, while supporting efficient multi-sensor late-stage data
fusion. We implemented MetaAl using metasurfaces at both dual-
band (2.4/5 GHz) and single-band (3.5 GHz) frequencies. Extensive
experiments demonstrate robust performance across diverse clas-
sification tasks, achieving 82.8% average accuracy (up to 89.8%)
even with a simple linear architecture. Multi-sensor fusion further
improves accuracy by up to 27.06%. MetaAl represents a funda-
mental shift in Edge AI architecture, where wireless infrastructure
becomes an integral part of the computing pipeline.
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1 INTRODUCTION

Edge Al systems, powered by massive networks of IoT devices [7, 22,
23, 31, 42, 64], face a fundamental architectural trade-off. On-device
Al offers low latency but is often infeasible due to the limited compu-
tational power and battery life of IoT devices. Consequently, many
applications adopt the conventional paradigm shown in Fig. 1(a),
where data is first transmitted to a powerful edge server for process-
ing. Crucially, for a vast number of real-world scenarios—including
environmental monitoring, industrial process control, and retail
analytics—the raw sensor data must be sent to a central server for
logging and analysis purposes anyway. In this common “transmit
then compute” model, communication and computation are treated
as two separate, sequential costs in terms of both energy and la-
tency. This inherent inefficiency has motivated research into new
computing paradigms.

To break the bottleneck of conventional server-side processing,
a promising line of research has explored Physical Neural Networks
(PNNSs) [35, 45]. PNNs function as specialized hardware accelerators,
analogous to GPUs, that leverage physical phenomena like wave
diffraction to perform massively parallel computation at the speed
of light. As illustrated in Fig. 1(b) and Fig. 2, a typical PNN operates
by first having the server encode input data onto a physical struc-
ture. An RF or optical signal is then used not to convey information,
but merely as a power source to “light up” this structure, perform-
ing the computation as the wave propagates through it. While this
architecture offers remarkable computational speed, it remains a
co-processor; it still requires the data to be fully transmitted to the
server first, thus maintaining the fundamental separation between
the acts of communication and computation.

More recently, a new line of work has sought to fuse these two
tasks. Foundational approaches to over-the-air computing success-
fully used signal superposition for addition [3, 47, 57]. However,
these systems realize the crucial multiplication operation through
complex pre-coding at the transmitter’s RF front-end, which is
not feasible for simple, commodity IoT devices. The pioneering
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Figure 1: Comparison between existing computing architec-
ture and MetaAl.

AirNN [48] system introduces a hybrid physical-digital architec-
ture, using metasurfaces to perform the convolution over the air,
with the rest of the network processed digitally. While a key step,
AirNN’s architecture is that of a specialized computational engine,
not a general communication system. To emulate a single convo-
lutional filter, it requires a complex multi-antenna relay to steer
signals toward multiple, separate metasurfaces—one for each filter
tap. This architectural complexity makes it a specialized apparatus
that is difficult to integrate into standard networks.

These limitations lead us to ask a fundamental question: can
we design a simple, single-metasurface architecture that enables an
end-to-end physical neural network, fully compatible with standard
wireless communication links? We answer this question affirmatively
with MetaAl, a novel computing paradigm illustrated in Fig. 1(c). In
our architecture, a single, reconfigurable metasurface is deployed
into the environment. When an IoT device transmits its data, the
metasurface itself processes the signal during propagation, perform-
ing Al tasks—such as human face recognition—within the physical
path. As a result, the edge server receives the final inference result
instead of the raw data, unifying the acts of communication and
computation into a single, efficient process.

By shifting the computation to the air, MetaAl offers several key
benefits. IoT devices are relieved from performing computation-
intensive and power-hungry Al tasks, potentially extending their
battery life and reducing hardware requirements. Simultaneously,
edge servers only receive pre-processed Al inference results, pro-
viding a structurally private solution by avoiding the transmission
of raw data. These advantages position MetaAl as an ideal solution
for scenarios such as scalable smart inventory and retail, as well as
privacy-preserving building management.
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Implementing neural network computation within wireless sig-
nal propagation presents two fundamental challenges. The first
challenge concerns data input: there exists a mismatch between
sequential wireless transmission and parallel neural network com-
putation. In wireless communication systems, data must be trans-
mitted sequentially, symbol by symbol, while neural networks,
including traditional PNNs, are designed to process all input data
simultaneously in parallel. Our key insight resolves this apparent
contradiction: most current PNN implementations focus on linear
neural networks, whose computations can be mathematically de-
composed into sequential operations without affecting the final
result. This property enables us to transform parallel neural com-
putations into equivalent sequential operations that align naturally
with wireless communication.

The second challenge lies in implementing the neural network
computations themselves through wireless signal propagation. Here,
we leverage a fundamental property of wireless systems: RF signals
naturally undergo linear transformation as they propagate through
the wireless channel, mathematically expressed as H(t)-x(t), where
x(t) is the input signal and H is the wireless channel. This channel-
signal interaction precisely mirrors the linear operations in neural
networks. By programming metasurfaces to create specific channel
conditions H(t), we can implement the exact weights and computa-
tions required by our neural network. The metasurface essentially
transforms the wireless channel into a configurable computing
medium, where neural network weights are realized through pre-
cisely controlled signal propagation.

Our design extends beyond single-sensor scenarios to support
multi-sensor late-stage data fusion. a crucial requirement for real-
world Edge Al applications. Modern IoT systems enhance sens-
ing performance through either multi-sensor of the same modal-
ity (like cameras from different angles) or cross-modality fusion
(such as combinations of visual, audio, and other sensor data). Our
metasurface-assisted approach naturally accommodates such multi-
sensor deployments through simple time-division multiplexing,
eliminating the need for additional hardware complexity. This capa-
bility enables sophisticated applications like comprehensive smart
home monitoring, 360-degree surveillance, or multi-modal human
activity recognition, all while maintaining the energy and compu-
tational benefits of our wireless computing paradigm.

We implemented MetaAl using two metasurfaces: one dual-band
(2.4/5 GHz) and one single-band (3.5 GHz) frequencies, demon-
strating its versatility across different wireless bands. Our exten-
sive experiments show that even with a simple linear architecture,
MetaAl achieves robust performance across diverse classification
tasks—from handwritten digits to human gestures—with recogni-
tion accuracy averaging 82.8% and peaking at 89.8%. The system’s
performance further improves significantly with multi-sensor fu-
sion: accuracy increases by up to 27.06% when combining different
sensor types, and by up to 25% when using multiple sensors of the
same type. Importantly, MetaAl maintains its effectiveness even in
challenging wireless environments with multipath and non-line-of-
sight conditions.
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Figure 2: Existing architectures of optical and RF PNNs.
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Figure 3: Digit Linear Neural Network.

2 BACKGROUND AND MOTIVATION

In this section, we introduce the fundamental concepts of physical
neural networks (PNNs) and motivate our proposed metasurface
based PNN (MetaAl) architecture.

2.1 Primer on Physical Neural Networks
We introduce the background of PNN in this section.

2.1.1 Linear Neural Network Preliminaries

Since most PNN implementations are based on linear neural net-
works (LNNs), we first present the theoretical foundation of LNNs.
A typical LNN [13, 17, 19, 52] consists of three components: an
input vector, a linear fully connected layer, and an output vector,
as shown in Fig. 3. The relationship between the input vector X,
the output vector Y, and the weight matrix W is characterized by:

w1 W12 wiU \ [ X1
w2,1 w22 waU || X2

Y=wX=| . i . ) R (1)
WM,1  WM,2 wMU/ \XU

where M and U represent the number of neurons in the hidden layer
and inputs, respectively. An important property of LNNs is their
linear composition: since all operations within an LNN are linear,
multiple layers can always be collapsed into an equivalent single
layer. Therefore, LNNs only require one hidden layer to capture
any linear transformation.

2.1.2  Physical Neural Network Fundamentals

Network Architecture. Physical Neural Networks (PNNs) [35,
36, 45, 62] have gained significant attention due to their unique
advantages of low latency, high energy efficiency, and inherent
parallel processing capabilities. Following the LNN architecture, a
typical PNN consists of a signal source (either RF or optical), an in-
put encoding layer, hidden processing layers, and an output detection
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layer (using photodetectors or antenna arrays). Each component
serves a specific function in the network: the signal source activates
the network, while the input layer encodes the incoming informa-
tion into the physical domain. The hidden layers perform linear
transformations through physical interactions, and the output layer
captures and converts the physical results back into measurable
signals.

Physical Data Encoding. All PNNs encode input data using spe-
cialized encoding devices, typically either a premanufactured mold
or a configurable metasurface [35, 62]. The mold approach em-
beds the input pattern directly in its physical structure, while the
metasurface method adjusts its meta-atoms’ phase or amplitude to
represent the input data, as shown in Fig. 2. When illuminated by a
signal source (RF or optic), these encoding devices modulate the
incident waves according to the encoded pattern, enabling parallel
data input to the network. The modulated waves serve as informa-
tion carriers, transmitting the encoded data simultaneously through
multiple parallel paths for processing.

Analog Linear Computing. Fig. 2(c) illustrates the fundamental
computing architecture of PNNs, which performs linear transfor-
mations through analog operations. The computation relies on two
key physical operations: multiplication and addition. Multiplication
occurs as wireless signals propagate through stacked transmissive
metasurfaces, where each meta-atom functions as a neuron by
modulating the phase or amplitude of incoming signals. Addition
happens naturally through wave superposition when multiple mod-
ulated signals combine in free space, effectively computing the sum
at the speed of light [62]. These physical principles enable PNNs
to efficiently implement linear operations, as both light and elec-
tromagnetic waves follow linear superposition principles in free
space.

Multi-layer in Practice. While LNNs theoretically require only a
single layer, existing PNNs [35, 36, 45, 62] implement multiple meta-
surface layers in practice. This apparent contradiction stems from a
fundamental difference in computation: digital LNNs can perform
multiplication and addition operations independently, whereas in
PNNs, these operations occur simultaneously at the meta-atoms.
Specifically, when signals from different inputs superimpose at a
meta-atom, they are modulated (attenuated or phase-shifted) to-
gether, preventing independent weight assignment for each input
signal. This coupling of operations means a single-layer PNN can-
not fully represent an LNN. As we prove in Appendix A.1, adding
more metasurface layers allows PNNs to asymptotically approach
LNN performance.
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Figure 4: Sequential computing framework of MetaAl.

2.2 Metasurface-assisted PNN

In this section, we introduce MetaAl, a novel metasurface-assisted
PNN architecture that enables concurrent data transmission and
neural network processing.

Challenge: Sequential Wireless Data Transmission. Modern
wireless communication systems fundamentally operate on sequen-
tial data transmission. Consider transmitting a digital image: the
image is first encoded into data bits, which are then grouped and
modulated into symbols (e.g., 1 bit per symbol for BPSK modulation),
as illustrated in Fig. 4. These symbols are transmitted sequentially
over the wireless channel, one after another. This sequential trans-
mission paradigm creates a fundamental mismatch with traditional
PNNs, which require parallel data input for processing.

Key Insight: Linear Decomposition of LNN. Our key insight
resolves this mismatch: the linearity of LNNs enables decomposition
of parallel operations into equivalent sequential computations, as
illustrated in Fig. 3. Consider the computation of output y; in an

LNN:

Y1 (2)

While traditional PNNs compute this expression by processing all
inputs X = [x1,---,xy] simultaneously, the linear nature of the
operation allows us to compute it sequentially by accumulating the
products wy ; - x; over time. This mathematical equivalence bridges
the gap between sequential wireless transmission and neural net-
work processing.

2.2.1 Architecture of MetaAl

We propose MetaAl, a novel PNN architecture that leverages wire-
less channels as the computing medium for neural network op-
erations, while maintaining compatibility with standard wireless
communication systems. As shown in Fig. 4, MetaAl processes data
through three key steps: First, input data is encoded into bits and
modulated into wireless signals for sequential transmission. These
signals then propagate through the wireless channel, characterized
by the time-varying channel response H(t). Finally, the receiver
accumulates the sequential signals to compute the neural network

outputs:
U
Z Hy(t;) - xi
i=0

where Hy(t;) represents the channel response for computing the
r-th output at time ¢. In classification tasks, each output y, corre-
sponds to a specific class probability—for instance, y, might indicate
the likelihood that the transmitted image belongs to the r-th cat-
egory, such as cat. Note that the multiplication is performed over

:w1,1-x1+~--+w1,,--xi+--~+w1,U-xU.

yr = > (3)
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the air, while sequential accumulation of the results is handled in
software.

Single Layer with Operation Decomposition. As illustrated in
Fig. 4 and Eqn. 3, MetaAl decouples multiplication and addition op-
erations by leveraging sequential processing, enabling independent
weight configuration for each input. This flexibility allows a single-
layer MetaAl to achieve equivalent performance to a multi-layer
traditional PNN, eliminating the need for multiple metasurface
layers to approximate LNN operations.

2.2.2  Metasurface (MTS)

A metasurface consists of multiple identical meta-atoms, each func-
tioning as a programmable signal modulator. These meta-atoms pri-
marily operate by introducing phase shifts ¢ to the reflected signals.
In typical implementations, each meta-atom maintains uniform re-
flection amplitude while providing controllable phase modulation.
In our prototype MetaAl, to simplify the fabrication process and
lower production costs, we use the 2-bit discrete MTS as the case,
where each meta-atom has 4 discrete states (0, /2, 7, 37/2).

Time-Varying Channel via Metasurface. Implementing MetaAl
requires creating a time-varying channel, as shown in Eqn.3. We
achieve this using programmable metasurfaces to dynamically
control signal reflection and shape the wireless channel. This ap-
proach leverages the well-established capability of metasurfaces for
precise, fine-grained channel manipulation demonstrated in prior
works [16, 21, 29, 40].

3 DESIGN OF METAAI

In this section, we delve into the detailed design of MetaAl, an
innovative PNN architecture enabling simultaneous data transmis-
sion and neural network computation. We first present how to
train the network and implement the weights using metasurface.
Next, we outline how parallelism and multi-sensor functionality
are integrated into MetaAl ’s architecture to enhance efficiency and
scalability. Finally, we introduce how MetaAl addresses practical
issues including clock synchronization and system noises, ensuring
robust performance in real-world deployments.

3.1 Training the Network

Training our MetaAl system begins with developing a digital neural
network model. Since we work with RF signals that are inherently
complex-valued (containing both amplitude and phase information),
we design our network architecture accordingly. Specifically, we
implement a complex-valued neural network with a single fully
connected layer, building on established approaches for complex
neural network architectures. The network’s structure is tailored
to each specific classification task. The fully connected layer has
dimensions U X R, where U represents the length of the input data
vector, and R corresponds to the number of possible classification
categories. For example, in a digit recognition task with 10 classes,
R would equal 10, while U would match the dimensionality of the
input signal.

For each dataset, we first encode each sample into data bits,
which are then modulated into symbols using a specific modulation
scheme, e.g., BPSK. This process transforms real-valued data repre-
sentations into complex-valued formats. We then use the training
samples to train this network via complex-valued backpropagation
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and gradient descent optimization. During training, the network
learns to optimize its complex weights, which include both ampli-
tude and phase components. These optimized weights, which we
refer to as desired weights (Hy,), serve as our target parameters.
After training, these desired weights guide the configuration of
our MTS, effectively translating our digital neural network into a
physical implementation that can process RF signals in real-time.

3.2 Weights Implementation with MTS

Design Goal. Our primary goal in weights implementation is to
configure the meta-atoms of the MTS to generate the desired time-
varying weights Hg, obtained from network training. To achieve
this, we first need to understand how MTS affects the wireless chan-
nel. The wireless channel through the MTS path can be modeled
as:

M o
Hm[s =ap Z €]¢m€j¢m,

m=1

©)

where M represents the number of meta-atoms, ¢, is the phase
shift introduced by the m-th meta-atom. The term a, represents
the amplitude offset induced by the transmission path, which is
assumed to be the same for all meta-atoms under far-field conditions.
The term ¢£1 represents the phase offset from the propagation path
through the m-th meta-atom. Notably, while &, appears in the
equation, it does not affect the final classification results. This is
because according to Eqn. 3, &p acts as a uniform scaling factor for
all outputs y,, thus preserving the relative probability distribution
of the classification results. Among these parameters, the phase
shift ¢y, of each meta-atom is the only parameter we can actively
configure to achieve:

®)

Before we can solve Eqn. 5 to obtain the configurations of each
meta-atom, we need to determine the phase offset ¢£l for each
meta-atom.

Hyes = Hmis.

Deriving the Propagation Phase Offsets. The phase offset gzﬁ‘zl
can be expressed as ko (dTx,m + dm Rx), Where ko = 2Z s the wave
number, and f is the wavelength of the RF signal. While dr », (the
distance from transmitter to the m-th meta-atom) can be determined
from the fixed positions of the transmitter and MTS, calculating
dm,Rx (the distance from the m-th meta-atom to receiver) appears
to require the receiver’s exact location. However, under far-field
conditions, we can simplify this calculation significantly. As shown
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Figure 7: Recognition results
with varying meta-atoms.

in Fig. 5, in the far-field region, the reflected signals can be approx-
imated as parallel waves, allowing us to express dy,; gy as:

dm,Rx = dl,Rx - (m - 1)ds COS(Q)’ (6)

where dj gy is the distance to the first meta-atom, ds is the spac-
ing between adjacent meta-atoms, and 6 is the angle between the
receiver direction and the MTS horizontal plane. An important
observation is that the term e/kod1rx appears as a common factor
for all meta-atoms. According to Eqn. 3, this common phase factor
affects all outputs equally and thus does not influence the relative
magnitudes of classification probabilities. Therefore, we can focus
solely on determining 6, which we achieve through standard beam
scanning techniques. This approach transforms a complex three-
dimensional positioning problem into a simpler angle estimation
task.

Deriving the MTS Configuration. We obtain the MTS configura-
tion by solving the following optimization problem:

® =arg Igin |Hmes — Hes|, )

m
where ® = [¢1, ¢, ..., par] represents the phase shifts of all meta-
atoms. However, this optimization faces a practical challenge: while
the desired weights Hy,¢ can span the entire complex domain, each
meta-atom in the MTS can only provide discrete phase states due
to hardware limitations.

The number of meta-atoms in the MTS directly affects our ability

to approximate the desired weights. As illustrated in Fig. 6, a larger
number of meta-atoms provides denser coverage of the complex
plane, enabling better approximation of the desired weights. We
then conduct simulated experiments using the six different datasets
to analyze how the number of meta-atoms affects recognition accu-
racy. Through empirical analysis shown in Fig. 7, we observe that
the recognition accuracy improves with the number of meta-atoms
but saturates beyond 256 meta-atoms. Therefore, we eventually
select M = 256 as an optimal trade-off between approximation
accuracy and hardware complexity (Detailed analysis seen in Ap-
pendix A.2).
Handling Multipath. A direct approach to dealing with environ-
mental multipath is to incorporate it into our optimization. Specifi-
cally, if we know the environmental channel response H,, we can
modify our optimization problem to:

® = arg I(I;il’l |Hmts — (Hges — He). ®

This approach requires disabling the metasurface to estimate H,
which introduces additional complexity and can only work in a
static environment where H, maintains constant.
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We design a more robust approach that leverages a fundamental
property of digital modulation: symbols are designed to have zero
mean over their period (Fig. 8(a)). This zero-mean property is not
coincidental but rather a deliberate design choice in digital commu-
nications to ensure DC-balanced transmission and reliable clock
recovery. When transmitting these zero-mean symbols through a
static channel H,, the received environmental multipath compo-
nents maintain this zero-mean property (Fig. 8(b)). However, by
configuring our MTS to provide different weights within a sym-
bol period, we intentionally break this property for the MTS path
while the environmental multipath components remain zero-mean
(Fig. 8(c)). Therefore, by sampling and combining multiple points
within one symbol period, we can cancel out the environmental
multipath while preserving the desired MTS response. This ap-
proach is particularly elegant as it requires no explicit channel
estimation and remains effective in dynamic environments where
H, may change between symbols. Note that we also use a standard
Cyclic Prefix (CP) to ensure that all these multipath components are
contained within the integration window, making this cancellation
effective.

3.3 Accelerating with Parallelism

According to Eqn. 2, each transmission only computes the probabil-
ity for one category (y1), as illustrated in Fig. 3. For a classification
task with R categories, this means transmitting the input data R
times sequentially, introducing substantial latency. To address this
challenge, we propose two parallelism schemes that enable simul-
taneous computation of multiple categories.

Subcarrier-based Parallelism. Our first approach utilizes multi-
ple subcarriers to achieve parallel computation, as shown in Fig. 9(a).
However, this presents a technical challenge: while we need dif-
ferent weights for different subcarriers, each meta-atom can only
provide a fixed phase value at any given time. To overcome this
limitation, we formulate a holistic optimization problem that finds
the optimal phase configuration across all subcarriers:

K U M
loss = — Z Y - log(| in,k . Z €](¢i‘m+¢f"’k) D, 9
k=1 i=1 m=1

where K is the number of subcarriers (equal to the number of cate-
gories), Y is the ground truth label (1 for correct class, 0 otherwise),
and the exponential term represents the phase response for each
meta-atom at each subcarrier. By minimizing this loss function, we
obtain phase configurations that enable effective parallel computa-
tion across all subcarriers.

Antenna-based Parallelism. Our second parallelization approach
leverages multiple receiving antennas, as illustrated in Fig. 9(b). In
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this scheme, each receiving antenna functions as an independent
output neuron, enabling parallel computation of multiple category
probabilities. However, since a single MTS generates the same
time-varying channel for all antennas, we need a method to create
distinct channel responses for each antenna.

Similar to the subcarrier-based approach, we formulate this as
an optimization problem:

L u Mo P
loss == >y -log(1 ) xip - &/ P ¥mi))), - (10)
=1 i=1 m=1

where L is the number of receiving antennas (equal to the number
of categories), y; is the ground truth label, and the exponential term
represents the phase response for each meta-atom at each antenna
location. By minimizing this loss function, we obtain phase config-
urations that create effective distinct channels for each antenna.

Takeaway. Both parallelization schemes enable simultaneous com-
putation of multiple categories, significantly reducing processing
time compared to sequential transmission. Note that this paral-
lelism approach is a trade-off between accuracy and latency. Dif-
ferent numbers of subcarriers and antennas can be used to achieve
parallelism, as illustrated in Appendix A.3. This trade-off depends
on specific system requirements and hardware constraints.

3.4 Multi-Sensor and Multi-Modality

In this section, we extend our computing model to support two
multi-sensor scenarios: multiple sensors of the same modality (e.g.,
multiple cameras from different angles) and sensors of different
modalities (e.g., camera and microphone). As shown in Fig. 10(a),
real-world applications often benefit from combining complemen-
tary information from multiple sensors to enhance sensing perfor-
mance.

Our approach leverages a key property of linear networks: weights
associated with different sensor inputs are independent in their
computations, as illustrated in Fig. 10(b). This independence en-
ables us to process each sensor’s data sequentially in a time-division
manner, then combine their results. For NS sensors, let xl.s denote

the data from the s'" sensor and H; (t7) represent its corresponding
MTS weight. The output probability for the r‘# category from the
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s*" sensor is:

(11)

US
yp= ) HI() -,
i=1

where US is the input data length of the s*" sensor. The final prob-
ability distribution combines results from all sensors:

NS
yrit=1 (12)
s=1

This time-division approach allows a single MTS to support multi-
ple sensors, regardless of their modality, offering significant advan-
tages over traditional PNNs that require separate metasurfaces for
each sensor. The approach not only reduces hardware complexity
but also maintains flexibility for varying sensor configurations in
practical deployments.

3.5 System Implementation Considerations

The aforementioned computing scheme assumes a theoretical sce-
nario. However, in practical implementation, MetaAl encounters
several system-level challenges, including clock synchronization
between the metasurface and transmitter and system noises. In the
following sections, we will elaborate on each issue.

3.5.1 Clock Synchronization

Until now, the above schemes assume a perfect match between the
sequential input data and the weights generated by the MTS, as
shown in Fig. 11(a). However, the transmitter and MTS operate
in a distributed manner, they do not share the same system clock.
Consequently, it induces a basis between the sequential input data
and the weight, as depicted in Fig. 11(b). Such a deviation results
in a significant reduction in recognition accuracy. For example, as
plotted in Fig. 13(b), a synchronization error of 4 s causes the recog-
nition accuracy to drop to 25.6%. To overcome this issue, traditional
methods [4, 44] usually utilize techniques like preamble codes and
cyclic prefixes to achieve synchronization, but these methods are
unsuited to our over-the-air computing systems. This is because
they rely solely on post-reception adjustments to fine-tune the
synchronization error, but the original information in the signals
is already disrupted by the weights induced by the MTS in our
case. Another option is to use expensive clock synchronization de-
vices [47] to ensure a shared clock. However, this approach is costly
and impractical for low-profile IoT devices. Instead, we propose
a two-phase synchronization strategy called Coarse-Grained De-
tection and Fine-Grained Adjustment (CDFA), which significantly
enhances MetaAl ’s ability to handle synchronization errors. The
details are presented below.

Coarse-grained Detection: In this initial stage, our basic solution
is to deploy a low-power energy detector (such as an envelope

1
Sync delay error (us)

1000

(a) Sync error pre-injection (b) Simulation results

Figure 13: Illustration of sync scheme.

detector) in the MTS to detect the arrival of the incident signal.
When the detector detects the energy of the incident signal greater
than a threshold, it activates an output signal to notify the MCU
behind the MTS to start loading the weights. However, this coarse-
grained detection still entails certain synchronization discrepancies.
We conduct experiments to examine the range of synchronization
errors using coarse-grained detection. The result is shown in Fig. 12,
from which we can see that 51.7% percentile synchronization error
is larger than 3 ps, resulting in a recognition accuracy less than 41%.
Such a result does not fully meet the requirements for over-the-air
computing.

Fine-grained Adjustment: To further mitigate the influence of
residual synchronization errors from coarse-grained detection, we
introduce a passive fine-grained adjustment strategy that mimics
potential synchronization errors by injecting artificially generated
error data into the training process. As shown in Fig. 13(a), a syn-
chronization error injector is added before model training. This
injector simulates synchronization errors by cyclically shifting the
data, reflecting the application of synchronization errors. Consider-
ing that, in practice, synchronization errors more closely follow a
Gamma distribution, as shown in Fig. 12, we use a Gamma probabil-
ity distribution to generate seeds s ~ Gamma(o, f§), which indicates
the number of positions for cyclic shifts.

We now conduct simulation experiments to validate the improve-
ment in system computational accuracy using the fine-grained ad-
justment method. The results are plotted in Fig. 13(b). We can see
that the recognition accuracy (solid red line) experiences a rapid de-
cline as the synchronization delay error increases. However, when
applying our proposed method, CDFA, MetaAl maintains high ac-
curacy levels until the synchronization delay error reaches 4 ps
(solid blue line). These results demonstrate that our method can ef-
fectively address synchronization issues without requiring complex
hardware modifications or precise clock-sharing mechanisms.

3.5.2  System Noises Alleviation

In practical implementation, MetaAl encounters diverse system
noises, including hardware noise (i.e., phase noise due to device
discrepancies among meta-atoms) and environmental noise. These
noise sources introduce disturbances to the final computation re-
sults. To mitigate the impact of actual noise disturbances, we pro-
pose a training scheme that introduces different noise levels to the
neural network in advance. Specifically, we develop a mathematical
model for noise-inclusive computation. The result affected by noise
can be expressed as:

U
Yr = Z [Himes (t) + Ngl - xi + Ne|, (13)
i=0
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where Ny is the system hardware noise and N, denotes the envi-
ronmental noise.

For the environment noise Ne, we can artificially add different
noise levels to the weighted results. For the hardware noise Ny,
since the weights constantly change during network training, we
can not directly add different noise levels to the weights. Therefore,
we reorganize Eqn. 13 as follows:

U
Yr = ZHmts(ti) : [xl' +Nd] + Ne|, (14)
i=0

where Nd = xj/Hmes(ti) - Ng. Observing Eqn. 14, we discern that
the hardware noise interference during computation can be simpli-
fied as a signal pre-disturbed by noise. Based on this insight, we can
artificially reduce the signal-to-noise ratio during the model train-
ing phase to mimic the device noise. By doing so, we can effectively
mitigate the impact of system noises on recognition accuracy.

4 IMPLEMENTATION

Metasurface Prototype and Control. MetaAl uses two prototype
metasurfaces (MTS) respectively for Wi-Fi and 5G NR frequency
bands to verify system performance. One MTS operates at dual-
band including 2.4 GHz and 5 GHz, another MTS operates at 3.5
GHz. Each MTS consists of 16 X 16 meta-atoms. To achieve recon-
figurability, we embed two PIN diodes (SMP1340-040LF) in each
meta-atom, enabling four phase shift states (0, /2, x, 37/2), as il-
lustrated in Fig. 14. By applying different bias voltage (0 V/5 V) to
PIN diodes, each meta-atom acts as a 2-bit shifter. To independently
and precisely control each meta-atom, we employ an STM32 mi-
crocontroller as the control core. The 256 meta-atoms are divided
into 16 groups, with each group controlled by 4 SN74LV595 shift
registers. Parallel control is implemented between groups to en-
hance efficiency. When the receiver moves to new locations, MetaAl
employs a feedback protocol [30] to reconfigure the MTS stages
accordingly.

Dataset Description. To evaluate the performance of MetaAl, we
select six diverse datasets, including MNIST [26], Fashion-MNIST [59],
Fruits-360 [1], AFHQ [2], CelebA [61], and Widar 3.0 [64]. These
datasets cover handwritten digits, fashion goods, fruits, animals,
human faces, and gestures. The detailed information about the six
datasets is listed in Table 1.

Network Model Prototype. MetaAl adopts one fully connected
layer complex neural network model, which is trained in the Py-
torch platform, termed the “simulation model”. The model is trained
on a computer powered by an AMD Ryzen 7950x (5.7GHz) proces-
sor, complemented by 64GB RAM and NVIDIA RTX4080 GPU. The
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Table 1: Performance under different datasets.

Dataset Training# Testing# Class# I‘{esNetvIB - DlécreteNN - MelaAI
Simulation Simulation Prototype Simulation Prototype
MNIST [26] 60000 10000 10 99.62 81.54 72.05 92.75 89.77
Fashion [59] 60000 10000 10 93.55 79.38 66.52 86.04 80.86
Fruits-360 [1] 25772 6528 8 99.82 80.71 68.77 89.11 85.05
AFHQ [2] 14630 1500 3 96.07 80.47 68.20 87.33 81.47
CelebA [61] 220 80 10 90.91 66.00 57.47 81.25 75.00
Widar3.0 [64] 2700 300 6 95.00 82.33 70.67 89.67 84.67

learning rate of the entire experiment is set to 8 X 1073, the mo-
mentum is set to 0.95, the batch size is set to 64, and the training
epoch is 60. Once the model is optimized, the weights are then
transformed into the MTS configurations, named the “prototype
model”.

Experimental Setup. For controlled experiments, we use one
USRP X310 software-defined radio device as the transmitter (Tx) and
the receiver (Rx), respectively. We conduct extensive experiments
in three indoor environments (corridor, laboratory, and office) to
evaluate the performance of MetaAl Fig. 15 presents a typical
experimental scenario in the office environment. In the default
setup, we select the MNIST dataset to test MetaAl performance
and use 256-QAM modulation to encode the input data. The carrier
frequency is set to 5.25 GHz and the transmission symbol rate is
1 M symbols/sec. The maximum switching rate of the MTS is set
to 2.56 MHz coding patterns/sec. We set the Tx-MTS distance as 1
m with an incidence angle of 30°, and the MTS-Rx distance as 3 m
with an emerging angle of 40°. All devices are placed at a height of
1.1 m. We use accuracy as a metric to evaluate the performance of
MetaAlL

5 PERFORMANCE EVALUATION

5.1 Overall Performance

To evaluate the system-level performance of MetaAl, we conduct ex-
periments on six different datasets, each varying in size, complexity,
and number of classifications. The results, shown in Table 1, re-
veal that MetaAl achieves recognition accuracies of 89.77%, 80.86%,
85.05%, 81.47%, 75.00%, and 84.67%, respectively. These accuracies
are only slightly lower than simulation (run on the digital com-
puter), no more than 7%, demonstrating MetaAl ’s capability to
recognize different tasks effectively. In particular, MetaAlI performs
worst in recognizing face tasks, likely due to the inherent complex-
ity of human faces, which require a more advanced deep learning
framework to extract distinguishing features. Additionally, to ver-
ify the effectiveness of our approach that first trains a network
with continuous weights and then uses the MTS to best approxi-
mate those ideal continuous values, we implement a discrete neural
network [24] as a baseline. The results in Table 1 show that the
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accuracy of the DiscreteNN method on the six datasets is 72.05%,
66.52%, 68.77%, 68.20%, 57.47%, and 70.67%, respectively, which is
significantly lower than that of MetaAl These results highlight the
continuous-to-discrete approximation strategy outperforms meth-
ods that are constrained to discrete parameters from the beginning.

5.2 Micro-benchmarks

Verification of clock synchronization scheme. To verify the
proposed clock synchronization scheme, we conduct a set of exper-
iments with/without a sync scheme. Fig. 16 illustrates the results,
we can see that without a sync scheme, the average recognition
accuracy is only 19.23%, which is basically a blind guess. With
coarse-grained detection (CD), the accuracy increases to 55.71%.
By combining coarse-grained detection and fine-grained adjust-
ment (CDFA), MetaAl can achieve a higher recognition accuracy of
89.28%. These results demonstrate the effectiveness of the proposed
scheme.

Verification of multipath cancellation scheme. We now eval-
uate how the multipath cancellation scheme impacts MetaAl per-
formance. Specifically, we conduct extensive experiments in three
indoor environments: a corridor, an office, and a laboratory, which
respectively represent different complex multipath environments.
For each, we randomly move the receiver to 10 locations and collect
measurements, respectively. Meanwhile, we evaluate both direc-
tional and omni-directional antennas (referred to as Dire and Omni)
on the Tx and Rx. Fig. 17 plots the results. Without the multipath
cancellation scheme, the recognition accuracy of MetaAl in the
corridor is higher than in other environments, while the Dire an-
tenna works better than the Omni antenna. This is because the
corridor is a low multipath environment, and the Omni antenna is
more susceptible to multipath than the Dire antenna. When using
the proposed multipath cancellation scheme, we can observe that
MetaAl is capable of achieving an average accuracy higher than
82.65% for both the Dire and Omni under different indoor envi-
ronments. These results indicate that our proposed method can
effectively mitigate the impact of multipath interference, making
MetaAl robust across various multipath conditions.

Verification of parallelism scheme. We now evaluate the ef-
fectiveness of the proposed parallelism schemes based on subcar-
riers and antennas. For the subcarrier-based implementation, we
utilize OFDM modulation to generate multi-subcarrier signals, con-
figuring the base frequency at 5.25 GHz and subcarrier spacing
at 40 kHz. In the antenna-based implementation, we use a fully
synchronized, multi-antenna receiver array (three USRP X410s).
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Figure 19: Performance under
noise scenarios.

Figure 18: Performance of par-
allelism scheme.

Experiments are conducted on three datasets, and the results are
summarized in Fig. 18. Compared to the baseline scheme, both par-
allelization strategies exhibit only a slight performance degradation,
validating the effectiveness of the proposed approaches.

Verification of system noises alleviation scheme. We now ex-
amine how system noises impact MetaAl performance. Specifically,
we fix the locations of the Tx and MTS with a distance of 1 m and
randomly move the Rx to 20 locations. In each location, for simulat-
ing different levels of environmental noises, we vary the transmitter
power from 5 dB to 30 dB with a step of 5 dB and collect 20 mea-
surements, respectively. Fig. 19 plots the results with/without using
the proposed system noise alleviation scheme. We can see that with
the help of the noise alleviation scheme, MetaAl can improve the
80th percentile accuracy from 80.48% to 87.92%, which implies the
effectiveness of the proposed scheme.

Verification of multi-sensor scheme. We now evaluate the per-
formance of MetaAl with the integration of different types of sens-
ing nodes for collaborative sensing using a shared MTS. Specifi-
cally, we select three different multi-sensor datasets, including (1)
Multi-PIE [50]: a human face dataset contains images of faces from
different camera angles, we select three views (c07, c09, and c29),
and respectively select a training set of 192 samples and a test set of
48 samples for 10 classifications in each view; (2) RF-Sauron [60]:
an RFID-based gesture dataset consists of three receiving antennas
in three different directions. In each antenna, we select a training
set of 2800 samples and a test set of 1280 samples for 10 classifi-
cations, respectively; (3) USC-HAD [63]: it consists of data from
accelerometers and gyroscopes to perform activity recognition. For
each sensor, we respectively select a training set of 336 samples and
a test set of 85 samples for 6 classifications. Next, we respectively
use the aforementioned datasets to conduct experiments. The re-
sults, shown in Fig. 20, demonstrate that as the number of sensing
nodes increases, the recognition accuracy improves. For example,
for the face dataset, the accuracy with one view is only 64.58%, but
it increases to 89.58% with three views, reflecting a 25% improve-
ment. Additionally, it is noteworthy that for collaborative sensing
across different modalities, MetaAl continues to enhance accuracy.
For instance, in the USC-HAD dataset, using both accelerometer
and gyroscope data leads to a 27.06% improvement over using a
single modality. These results indicate that MetaAl can effectively
leverage a shared MTS to enable collaboration between different
sensing nodes, thereby boosting sensing performance.
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5.3 Performance under Diverse Factors

Performance under NLoS scenarios. In this experiment, we
examine the performance of MetaAl in an NLoS corridor corner.
Specifically, the MTS is placed at a corridor intersection, the Tx and
Rx are not visible, and the distance of Tx-MTS is set as 1 m. We
vary the distance of Rx-MTS from 1 m to 22 m with a step of 3 m.
Fig. 21 presents the results. We can see that MetaAl can achieve
an average accuracy above 76.60% across different locations, which
implies MetaAl can work well in NLoS scenarios.

Performance under different frequency bands. In this experi-
ment, we examine the generalization capability of MetaAl at dif-
ferent frequency bands, including 2.4 GHz, 3.5 GHz, and 5 GHz.
Specifically, we fix the Tx and the MTS, and randomly move the Rx
to ten different locations. In each location, we collect measurements
and plot the results in Fig. 22. We observe that MetaAl can achieve
an average accuracy above 88.69%, 88.39%, and 89.67% for 2.4 GHz,
3.5 GHz, and 5 GHz, respectively. These results indicate that MetaAl
can work well for different frequencies.

Performance under different modulation schemes. We now
evaluate the MetaAl performance when the transmitted informa-
tion is encoded by different modulation schemes including BPSK,
QPSK, 16-QAM, 64-QAM, and 256-QAM. The experimental setup
is the same as the default. As shown in Fig. 23, the recognition
accuracy slightly varies as the modulation order increases. Overall,
MetaAl consistently achieves an average accuracy above 88.71%,
demonstrating its robust performance across different modulation
schemes.

Impact of different Tx-MTS distances. In this experiment, we
examine the impact of different Tx-MTS distances. By moving Tx
along the direction of 30°, we change the distance between Tx and
MTS from 1 m to 22 m with a step of 3 m. As shown in Fig. 24,

0 10 20 30 40 50 60 70 80

Figure 25: Impact of different
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Figure 26: Impact of dynamic interference.

MetaAl can consistently achieve an average recognition accuracy
higher than 78.94%, which indicates MetaAl is robust to different
Tx-MTS distances.

Impact of different Tx-MTS angles. To evaluate the impact of
the angle between Tx and MTS, we move the Tx along a semicircle
(1 m radius) from 0° to 80° with a step with 10°. The results are
plotted in Fig. 25, we observe that MetaAl can achieve a similar
recognition accuracy above 84.85% when the incident angle changes
from 0° to 60°. However, when the angle is more than 60°, the
accuracy gradually declines. For example, the accuracy is only
75.01% when the angle is 80°. This is because the MTS has a limited
FoV (i.e.,[-60°, 60°]).

Impact of dynamic interference. We now evaluate the perfor-
mance of MetaAl under different dynamic interference. Specifically,
we deploy the Tx-MTS and the Rx-MTS with a distance of 3 m, and
respectively ask one interferer to walk normally in four different
regions as shown in Fig. 26(a). The results are shown in Fig. 26(b).
We observe that the accuracy only slightly decreases in regions
R to Rs. This robustness is attributed to our proposed multipath
mitigation scheme, which effectively reduces the impact of dynamic
interference in scenarios where the environmental channel varies
between symbols but remains stable within each symbol—that is,
the walking speed of the interferer is significantly lower than the
symbol rate. In contrast, a more noticeable accuracy drop occurs in
region Ry, where the interferer obstructs the direct path between
the receiver and the MTS. Nevertheless, the recognition accuracy
in R4 remains above 85.38%. These results demonstrate that MetaAl
is resilient to dynamic environmental interference.

Performance under cross-room scenarios. We now examine
the performance of MetaAl in a cross-room scenario. Specifically,
we set the distance of Tx-MTS to 1 m, while the Rx is randomly
moved to 18 different locations spanning three offices. The detailed
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Figure 27: Performance under cross-room scenarios.

setup is illustrated in Fig. 27(a). At each location, we measure the
recognition results. As shown in Fig. 27(b), the recognition accuracy
generally decreases as the distance increases. For example, in the
first room (P;-Pg), MetaAl achieves an accuracy above 82.64%; in
the second room (P7-Pi2), the accuracy remains above 76.55%; and
in the third room (P;3-P;3), MetaAl still achieves an accuracy above
71.53%. These results demonstrate that MetaAl can work well across
a realistic cross-room environment.

5.4 Case Study: Real-time Face Recognition

In this case study, we validate the effectiveness of MetaAl for real-
time face recognition using IoT camera devices in real-life scenarios.
Specifically, during the data collection phase, we deploy IoT cam-
eras (ESP32-CAM) in five different backgrounds and recruit ten
volunteers. Each volunteer naturally stands in the monitored areas
while the IoT cameras continuously capture facial images at 30 FPS.
Our pre-processing algorithm automatically selects approximately
12 clear face images per background, yielding 60 images per vol-
unteer. To further enhance network robustness, we incorporate
an additional 300 facial images from ten individuals in the CelebA
dataset [61] as supplementary training data. In the testing phase, we
let each volunteer stand naturally in the camera-monitored area 20
times, and the IoT cameras continuously stream the facial images in
real-time to the control terminal to start the calculation in MetaAl
system. Fig. 28 shows that MetaAl can achieve an average accuracy
of 78.54%, maintaining stable performance across different users
and environmental conditions. This result demonstrates the effec-
tiveness and practicality of MetaAl for IoT-based face recognition
applications.

6 RELATED WORK

Metasurfaces. Metasurfaces are emerging as a hot technology to
smarten the wireless environment [6, 8, 9, 12, 16, 18, 30, 33, 56]. By
encoding the state of each meta-atom, it can manipulate the phase/
amplitude of electromagnetic waves to achieve different applica-
tions, e.g., coverage expansion [14, 15, 21, 25, 32, 34, 38-40, 46, 51],
localization [27, 43, 55], wireless charging [11], etc. For example,
AutoMS [41] strategically designs and places multiple passive meta-
surfaces to extend mmWave coverage. LLAMA [10] employs a
programmable metasurface to perform real-time polarization trans-
formation to reduce the signal attenuation. RF-Mediator [38] de-
signs a flexible metasurface to enhance cross-medium link quality.
These works mainly focus on improving wireless coverage and
signal quality enhancements by leveraging metasurface to perform
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Figure 28: Real-time face recognition.

beamforming, beam steering, and polarization control. In contrast,
MetaAI employs a metasurface to achieve physical neural network
computation in the wireless channel.

Physical Neural Networks. Physical neural networks (PNNs)
have gained much research attention in recent years [5, 35-37, 49,
53, 58]. For example, many works [35, 36, 62] use stacked trans-
missive metasurfaces to emulate the parallel structure of digital
neural networks for achieving linear PNNs. Although promising,
they require a specialized device (e.g., a passive mold or a meta-
surface) to encode input data and a light/RF source merely serves
to activate or power the PNN, enabling parallel data input to the
network. Besides, some of these systems [35, 62] use passive meta-
surfaces for weight implementation, limiting adjustability and pre-
venting dynamic adaptation to different computing tasks. Other
studies [28, 54, 65] have explored nonlinear media layers for activa-
tion functions, but they primarily focus on device fabrication and
simulate full neural networks.

Unlike them, MetaAl explores a new design space: integrate
computing into the wireless environment. MetaAl directly leverages
wireless channels as the computing medium for neural network
operations, while maintaining compatibility with standard wireless
communication systems. Moreover, MetaAl only employs a single
metasurface, and can be shared across multiple IoT devices, enabling
multi-sensor integration to enhance accuracy.

RF Computing. Much research has been devoted to using RF sig-
nals to achieve OTA computations for diverse applications [3, 20, 47,
57]. For instance, AirFC [47] uses signal superposition to perform
the addition operation over the air. While promising, the crucial
multiplication operation (i.e., applying the NN weights) is realized
through complex pre-coding at the transmitter’s RF front-end. This
requires specialized, powerful transmitters and is not compatible
with simple, commodity IoT devices. More recently, AirNN [48]
pioneers a hybrid physical-digital architecture, where the convo-
lution is implemented in the physical domain and the rest of the
neural network is processed in the digital domain. While pioneer-
ing, its architecture is that of a bespoke computational engine, not
a general-purpose communication system. Furthermore, it uses a
complex multi-antenna relay to steer signals toward multiple, sepa-
rate metasurfaces. This architectural complexity makes it not easily
integrated into standard communication networks.

In contrast, MetaAl offloads the multiplication operation entirely
into the environment and implements an end-to-end neural net-
work using a single, shared metasurface that integrates seamlessly
into standard network topologies. This allows the transmitters
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to be simple, low-cost, commodity IoT devices without requiring
any hardware modification or complex pre-coding capabilities, and
makes over-the-air computation a practical feature for existing wire-
less systems. In essence, MetaAl makes over-the-air computation
practical for the large-scale, low-cost IoT scenarios.

7 DISCUSSION AND FUTURE WORK

Model scalability. Our system currently implements LNNs, where
model “size” (input/output dimensions) is limited by the applica-
tion’s latency tolerance, as larger models require more sequential
transmissions. While our results show LNNs are effective for many
tasks, extending to deeper architectures like Transformers requires
integrating non-linear components. We see this as a primary direc-
tion for future work.

Hardware and Deployment Constraints. The performance of
MetaAl is fundamentally linked to the physical hardware. The
precision of the computation is determined by the MTS’s resolu-
tion—both the number of meta-atoms and more importantly their
individual bit-depth. Our prototype, with 256 2-bit atoms, repre-
sents a practical trade-off between cost and performance but we
expect more advanced metausrface could further improve the per-
formance.

Device Mobility. One limitation of the current system is its han-
dling of device mobility. When the transmitter or receiver moves,
the physical propagation paths are altered, invalidating the pre-
calculated mapping between MTS configurations and the desired
logical weights. To adapt, the system must re-estimating the chan-
nel and re-solving the optimization problem (Eqn. 7). The system’s
ability to support mobility is therefore a race between the target’s
speed and this recalibration latency.

8 CONCLUSION

In this paper, we design and implement MetaAl, a metasurface-
assisted system to enable concurrent data transmission and neural
network computation in the wireless environment. By encoding the
phase values of each meta-atom, MetaAl can perform multiplication
and additions in the air, thus achieving neural network computing.
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A APPENDICES

Appendices are supporting material that has not been peer-reviewed.

A.1 Why Existing Linear PNNs Need Multiple
Metasurface Layers?

Existing Linear PNNs. The computing process of a single layer
PNN can be described as:

0 0 1 1
vi] [Pn 0 Bim|[e Bia o Pulixa
=1 . . - N " N . (15)

Rl Py Prwm By Byl U

1006


https://doi.org/10.1109/JIOT.2025.3527126

SIGCOMM ’25, September 8-11, 2025, Coimbra, Portugal

where «a; represents the weight of the mapping for the i-th meta-
atom on the metasurface, M represents that there are M meta-atoms
on the metasurface, [ means the number of layers and ﬁl represents
the channel offset from I-th layer to (I + 1)-th layer. § ~ G(d,s),
where d is the distance of adjacent layers and s is the distance
between meta-atoms on the metasurface. Generally, d and s are
stable, leading us to conclude that ﬁl ~ G(d,s) is also stable. This
allows us to further simplify the expression as:

Fri(ar,---,am) ] [x1

Y Fii(ay,---,apm)

(16)

yrl [Fru(as---,am) Fru(ay,---.am)] |xu
where Fg ;7 is a function that represents a linear combination of
the variables (aj, az, ..., ap).

Analyzing Existing Linear PNNs Need Multiple Layers. Based
on Eqn.1 and Eqn.16, to achieve equivalence between the two net-
works, the following conditions must be met:

w1 wLU Fii(as,---,am) Fri(ay,---,am)

(17)
Fiu(ay, -+ ,am) Fru(ai, -+, am)

WR,1 WRU

We can convert this formula into a system of equations, like

w1 = Fri(ag, -+, am)
w2 = Fia(ag, -+ ,am)

(18)
wryu = Fryu(a1, -+ ,am)

In general, it can be stated that M < R X U, Eqn.18 indicates
that the number of unknown parameters (as, - - - , apr) is less than
the number of constraints wrxys, resulting in an overdetermined
problem. In this scenario, F; j(ay, - - ,ap) cannot effectively ap-
proximate w; j. However, by stacking multiple layers of PNN,
the number of unknown parameters increases significantly. Thus,
Fij(ay,---,apm) can more effectively approximate w; j, bringing
the performance of PNN closer to that of LNN.

We conduct a simulation by adjusting the number of layers from
1 to 6 to examine the impact of varying numbers of metasurface
layers on PNN performance. We use the MNIST dataset for testing,
the results of the simulation are shown in Fig. 29. It is evident that as
the number of layers increases, the recognition accuracy improves.
The accuracy reaches its peak with five layers, approaching the
performance of a single fully connected digital layer. This finding
aligns with the fact that existing PNNs require multiple metasurface
layers.

The need for multiple physical layers in traditional PNNs arises
from their parallel processing of all inputs. When multiple input
signals arrive at a single metasurface simultaneously, a given meta-
atom can only apply one trans- formation to the superposition
of those signals. It cannot assign independent weights to each
individual input. Therefore, stacking more layers is a way to add
degrees of freedom to try and approximate the simple matrix-vector
product.
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Figure 29: Impact of different layers of PNNs.

A.2 Analysis of the Design Choice for Using 256
Meta-atoms

6

To quantify the ability of the resultant weights to approximate
the ideal weight domain, we propose to use weight distribution
density (WDD) to quantify the mapping degree between the resul-
tant weight distribution and the ideal weight domain. The weight
distribution density is given as:

Size(Sc)me?

WDD =
(Y22

(19)
where we define the set S¢ containing all possible MTS weights W,
and a function Size(-) to count the number of elements in the circle

with r = ‘/TE Besides, € is the range of tolerated error in mapping.
The physical meaning of e? is the number of digital weights that
can map into the same MTS weight within the tolerated error. We
empirically set ¢ = 0.002. A larger WDD generally corresponds
to superior performance, since it means a higher mapping degree
between the resultant weight distribution and the ideal weight
domain. Note that although the weights of digital neural networks
are theoretically distributed throughout the real number space,
in practice, the network functions often only rely on the relative
relationship and direction information of the weights Therefore,
we can map these weights to a bounded space with the circle with
a radius of r as the boundary through normalization or function
transformation, i.e., 71'(\/75)2, thereby representing the behavior of
the original network in the weight space.

As shown in Fig. 30, our WDD metric, which reflects the hard-
ware’s weight representation capability, increases sharply and then
saturates at 256 meta-atoms. This tells us that the hardware’s abil-
ity to represent weights effectively maxes out at this point. This
consistent result—where the accuracy for all datasets stops improv-
ing at the same point predicted by our hardware-agnostic WDD
metric—provides strong evidence that 256 is the optimal point of di-
minishing returns. Beyond this, adding more atoms would increase
system cost and complexity for no meaningful gain in performance.

1
1(256, 0.95)
0.75 i
Q |
0.5 !
= |
0.25 !
0 |
064 256 576 1024

Number of meta-atoms

Figure 30: WDD values with varying meta-atoms.
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A.3 Parallelization Scheme Performance under
Different Subcarrier and Antenna Settings

We performed a simulation (conducted in the MNIST dataset) to
quantify and understand the impact of the number of subcarri-
ers/antennas on parallelization schemes. The result is plotted in
Fig. 31, and we can see that the recognition accuracy gradually
decreases as more subcarriers and antennas are involved. This is
because the subcarrier- and antenna-based path signals are jointly
modulated (phase-shifted) by the MTS, which prevents assigning
independent weights to each path. Despite the drop in accuracy,
the processing time is significantly reduced compared to sequen-
tial transmission. This reflects a trade-off between accuracy and
latency, and the optimal choice depends on specific application
requirements and hardware constraints.

100 100
S S
g g g g0
Iy Iy
8 8
3 60 2 60
< <

40 40

1.2 4 6 8 10 1.2 4 6 8 10
Number of subcarriers Number of antennas

(a) Subcarrier-based. (b) Antenna-based.

Figure 31: Performance under different numbers of subcar-
rier/antennas.

A.4 End-to-End Performance Analysis: Energy,
Latency, and Accuracy

To quantify the practical benefits of our over-the-air computing par-
adigm, we performed a detailed analysis of Meta-AI's end-to-end
energy consumption and inference latency. Since our approach in-
tegrates computation directly into the data transmission process, a
fair comparison requires that software-based baselines also account
for both distinct tasks. Therefore, we compare Meta-Al against two
critical systems where data is first transmitted from an IoT device
to an edge server (AMD Ryzen 5 CPU, Nvidia RTX4080 GPU) and
then processed for inference:

(1) ResNet-18: A state-of-the-art deep neural network, repre-
senting the high-accuracy benchmark.

(2) Software LNN: A model with the exact same architecture
as Meta-Al, providing a direct, apples-to-apples comparison
of the computational approach.

We tested all systems on the MNIST and AFHQ datasets, measuring
the total time and energy required to process a single input image
from transmission to result. The outcomes, summarized in Table 2
and Table 3 , reveal a clear trade-off between raw accuracy and
computational efficiency, where Meta-Al establishes a new, ultra-
low-power operating point.

The Meta-Al Efficiency Advantage: The data clearly shows that
Meta-Al is by far the most efficient system. On the MNIST dataset,
Meta-AT’s total energy consumption is just 10.92 mJ, which is 5.8x
lower than the most efficient software baseline (CPU LNN) and
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16.7x lower than the high-accuracy GPU ResNet-18. This dramatic
improvement stems from a fundamental shift in where the energy
is spent. By offloading the energy-intensive matrix multiplications
from the server into the wireless channel itself, Meta-AI accepts
a small overhead in transmission and MTS control energy. This
investment is paid back orders of magnitude over by the reduction in
server-side computation, which consumes a mere 0.008 mJ, three
to four orders of magnitude lower than the energy consumed
by the CPU or GPU for the same task.

This architectural shift is also the key to Meta-AI’s latency ad-
vantage. In a traditional system, end-to-end latency is the sum of
transmission time and a significant server computation time (e.g.,
2.117 ms and 4.147 ms for the CPU/GPU LNN). In contrast, Meta-
Al fuses these two steps: the computation happens during signal
propagation. This means the time spent on transmission is also the
time spent on computation, leaving only a negligible server-side
processing time of 0.013 ms. As a result, Meta-AI’s total latency
(1.581 ms) is faster than the sequential CPU-based LNN (2.117
ms) and solidifies its position as the lowest-latency end-to-end
solution.

The Accuracy-Efficiency Trade-off: This significant gain in effi-
ciency comes with a predictable trade-off in accuracy. The complex,
multi-layer ResNet-18 achieves the highest accuracy (99.62% on
MNIST), which Meta-AT’s simpler linear model cannot match. How-
ever, the more telling comparison is with the software-based LNN.
Here, we see that Meta-Al achieves comparable accuracy (e.g., 87%
vs. 92% on MNIST) while providing the immense energy and la-
tency benefits described above. This demonstrates that Meta-Al is
not simply a less accurate system; it is a fundamentally different
and more efficient way to implement the same class of model. It
creates a new, valuable point on the accuracy-vs-efficiency
curve for applications where extending the battery life of IoT
devices and minimizing server load are more critical than achiev-
ing the absolute highest accuracy. Our future work will focus on
incorporating more complex operations to close this accuracy gap.

Table 2: Performance under MNIST dataset.

Time Energy
Model

System Accuracy

T Server Cs ting  Total Server Cq ting  MTS Total

CPU  ResNet-18  99.62% 0157 ms 771 ms 7.867ms  0.856 m] 22737 mJ -- 228.23 m]

cPU LNN 92.75% 0157 ms 1.96 ms 2117ms 0856 m] 6272 m] -- 63.576 m]

4080 GPU  ResNet-18  99.62% 0157 ms 430ms 4457ms 0856 m] 182.37 m] -~ 183.226m]

4080GPU  LNN 92.75% 0157 ms 399 ms 4147ms 0856 m] 1247 m] 125.56 m]

Meta-Al LNN 87.29% 1568 ms 0013 ms 1581ms  8.561m] 0.008 m] 2353m)  10.92m]

Table 3: Performance under AFHQ dataset.

Time Energy
Model

System Accuracy

T Server C ti Total i Server Computing ~ MTS Total

CPU  ResNet-18  96.07% 0.901 ms 16.695 ms 17596 ms  4.921m] 349.13 m] -~ 354051mJ

CcPU LNN 87.33% 0.901 ms 4621 ms 5522ms 4921 m] 94.52 m] --  99441mJ

4080GPU  ResNet-18  96.07% 0.901 ms 7.147 ms 8048ms 4921 m] 21399 m] 218911 mJ

4080GPU  LNN 87.33% 0.901 ms 5.247 ms 6.148ms 4921 m] 155.02 mJ 159.941 m]

Meta-Al LNN 80.227% 2704 ms 0.0067 ms 2.71ms 14764 m] 0.002 m] 4054m]  18.82m]
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