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RF-Sauron: Enabling Contact-Free Interaction
on Eyeglass Using Conformal RFID Tag

Baizhou Yang , Ling Chen , Xiaopeng Peng, Jiashen Chen , Yani Tang , Wei Wang ,
Dingyi Fang , Member, IEEE, and Chao Feng

Abstract—Smart eyeglasses are emerging as a new medium
for human–computer interaction. Existing solutions typically rely
on cameras or touchpads, raising privacy invasion concerns or
requiring users to physically interact with the glass frames.
Here, we present RF-Sauron, a novel mid-air gesture interaction
system for eyeglasses, based on radio frequency identification
(RFID). The design of our RF-Sauron system involves embedding
a conformal RFID tag into the eyeglass frame, where the received
signals change with user gestures. We optimize the radiation
gain of the tag to avoid view blockage while preserving a long
working range. To discriminate different gestures, we propose
an adaptively weighted multichannel fusion network to extract
their respective distinctive features. To allow efficient adaptation
of the pretrained network to new users, we also introduce a
novel diagonal dot-product attention in our contrastive learning
framework to uncover the feature similarities of different users.
The proposed RF-Sauron system was evaluated through extensive
experiments, demonstrating an average recognition accuracy of
98.86% across 20 users and a cross-user accuracy of 98.75%.

Index Terms—Contrastive learning, gesture recognition, radio
frequency identification (RFID), smart glasses, wireless sensing.
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I. INTRODUCTION

SMART eyeglasses for human–computer interaction have
received increasing attention in recent years. With the par-

ticipation of major tech companies like Google [1], Apple [2],
and Meta [3], the global smart glass market size was valued
at U.S. $6.59 billion in 2024 and is projected to grow at a
compound annual growth rate of 9.9% from 2024 to 2030 [4].
It is also estimated that half of the global population will
wear eyeglasses daily by 2050 [5]. Transforming ordinary
eyeglasses into smart devices could potentially unlock a wide
range of applications. In smart homes and offices, for instance,
smart eyeglasses could enable users to interact seamlessly with
household and office appliances, such as lights, thermostats,
printers, and entertainment systems, using hand gestures. This
hands-free interaction offers a significant advantage over tradi-
tional interfaces like buttons or touchscreens, especially when
users have their hands occupied or face mobility constraints.
In the manufacturing industry, such hands-free interaction and
control capabilities may allow workers to multitask efficiently.
For example, they could operate machinery while accessing
information or communicating with colleagues without phys-
ical involvement, thereby minimizing workflow disruptions.
This enhanced functionality has the potential to significantly
improve productivity in industrial settings.

Most existing solutions for smart glasses are based on
cameras and touch panels [6], [7], [8], [9], [10], [11], [12].
FaceSight [13], for example, integrates an infrared camera on
the bridge of the eyeglasses and recognizes user gestures using
computer vision approaches. RimSense [14] enables touch-
based interaction on eyeglass rims using piezoelectric sensors.
While these approaches achieved high recognition accuracy,
they tend to be highly sensitive to ambient lighting conditions.
In smart homes, where lighting varies significantly through-
out the day, this sensitivity can compromise the recognition
performance. Likewise, in smart factories and warehouses,
lighting conditions may also become too challenging for these
systems to function properly. Another concern with vision-
based approaches is the potential breach of user privacy [15],
where sensitive personal data may be captured by cameras
inadvertently, raising potential ethical and security issues.
Acoustic approaches [16], [17], [18] have also been explored
for gesture recognition in smart eyeglasses. However, these
systems typically rely on battery power, which are less energy-
efficient and may require frequent recharging, posing practical
challenges for long-term uses.
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Fig. 1. Application of our RF-Sauron system for contactless interactions in
smart eyewear.

Inspired by recent advances in wireless sensing, radio
frequency identification (RFID) technology has been widely
explored for sensing applications [19], [20], [21], [22]. The
RFID tags are ideal for sensing due to their compact size,
flexibility, energy efficiency, invariance to lighting conditions,
privacy-preserving ability, and low cost (e.g., only a few
cents per tag). Unlike acoustic- and vision-based smart glasses
that typically rely on battery support, RFID is not limited
to power constraints by drawing energy from transmitted
signals to enable backscatter transmission. This eliminates
the need for onboard batteries, thereby enhancing energy
efficiency, reducing the size and weight of the eyewear, and
minimizing maintenance demands. RFID tags are also easier
to manufacture and deploy. In addition, RFID is invariant
to lighting conditions which ensures reliable performance
in environments with varying or challenging illumination.
Superior recognition accuracy has also been demonstrated in
scenarios where user privacy is a priority.

However, applying RFID technologies to eyeglasses for
gesture interaction remain challenging. First, traditional com-
mercially available RFID tags are difficult to embed into
eyeglass frames because of their complicated topology. Even
a slight modification to the structure of tag may result in
unpredictable variations in performance. Second, the differen-
tiation of certain types of gestures are particularly difficult.
The examples include the symmetrical gestures that exhibit
highly similar signal characteristics. Furthermore, training of
existing gesture recognition systems typically requires a large
amount of data. Repetitive retraining may also required when
unseen users are introduced, as a same gesture may differ
in characteristics like shape, velocity, and duration when
performed by different users.

To address these issues, we introduce RF-Sauron, a low-
cost, lightweight, and fine-grained gesture interaction system
for smart glasses based on RFID technology. Compared to
other smart eyeglass systems that rely on expensive and heavy
battery-powered sensors, our RF-Sauron offers a potentially
enhanced user experience with more affordable, lightweight,
and energy-efficient design. Additionally, improved robustness
of our system to environmental changes is also demonstrated.
As shown in Fig. 1, the proposed RF-Sauron system consists
of a specially designed conformal RFID sensing tag integrated
into the eyeglass frame, where the received signals change

with user gestures. Our RF-Sauron provides accurate gesture
recognition by analyzing these variations using novel neural
networks. Several challenges presented in the practical imple-
mentation of our system were also addressed.

Challenge 1: Due to the specific structure of the glasses,
the shape and design of the sensing tag should fit the frame to
avoid obstructing the user’s view. Additionally, the tag should
be able to receive maximum energy from the reader antenna
and be highly sensitive to the user’s gestures. To address this,
we thoroughly analyze the eyeglasses’ structure and select the
front edge of the frame as the optimal location for the tag. We
then develop an equivalent circuit model to evaluate the mutual
coupling between various antenna structures. Following this,
we design a multistage antenna workflow that incorporates a
T-match structure and an L-shaped feeding mode to achieve
impedance matching. Ultimately, the tag meets the spatial and
dimensional constraints while maintaining long communica-
tion distances.

Challenge 2: Due to the long wavelengths of RFID sig-
nals, recognizing similar symmetric gestures is nontrivial.
To address the second challenge, we first deploy multiple
antennas to capture variations in the reflected signals from
different perspectives caused by gesture activity. Then, we
introduce a weight-based multichannel fusion network that
individually extracts gesture pattern features from both phase
and amplitude measurements in each antenna. By assigning
different weights to each antenna based on its significance,
the network effectively combines these features to achieve
accurate and precise gesture recognition.

Challenge 3: Different users exhibit unique behavioral
patterns when performing the same gesture, leading to varying
signal fluctuations. As a result, the features extracted from
measurements become inconsistent across users, making it
challenging to apply the pretrained network to new users
effectively. Prior methods [23], [24], [25], [26], [27] for
extracting user-irrelevant features typically require abundant
data and a complex model design. To solve this problem,
we propose a novel diagonal dot-product attention (DDPA)-
based contrastive learning framework to explore the underlying
similarities in data distribution between different users. A key
observation is that while certain feature dimensions may differ
across users, many similarities persist in other dimensions.
This insight inspires us to assign higher weights to similar
dimensions and lower weights to dissimilar ones. By doing
so, the model concentrates more on the shared patterns across
users, improving recognition performance despite variations in
user behavior.

We build our system with commodity RFID devices. The
effectiveness of our RF-Sauron system is validated through
extensive experiments in two different indoor environments.
The specific contributions of this work are listed as follows.

1) We introduce RF-Sauron, a cost-effective RFID-based
mid-air gesture interaction system for smart eyeglasses.
By making use of a low-cost conformal RFID tag, an
ordinary eyeglasses is transformed into smart devices
capable of gesture sensing.

2) We combine novel designs of both hardware and
a neural-network-based gesture recognition in our

Authorized licensed use limited to: University of Wisconsin - Parkside. Downloaded on September 14,2025 at 02:37:52 UTC from IEEE Xplore.  Restrictions apply. 



14322 IEEE INTERNET OF THINGS JOURNAL, VOL. 12, NO. 10, 15 MAY 2025

RF-Sauron system. Improved performance in tag confor-
mality, communication distance, and discrimination of
similar gestures, as well as reduced user dependencies
are demonstrated.

3) Extensive experiments demonstrate the effectiveness and
robustness of our RF-Sauron system. An average recog-
nition accuracy of 98.86% is demonstrated across 20
users with a cross-user of 98.75%.

II. RELATED WORK

A. Interaction With Smart Glasses

Many systems employ different sensors in smart glasses
to perform interactions. For example, some studies [13], [28]
use cameras installed on the edge of the glasses to recog-
nize different gestures. While achieving promising processes,
such methods are sensitive to lighting conditions and incur
privacy invasion. GlassGesture [29] adopts accelerators in the
glass to sense head movement. Other works [14], [30] use
piezoelectric sensors to convert the edges of the glasses into
a touch-sensitive surface, making gesture interaction possible.
These solutions require the user to touch the eyeglass frame,
which is extremely inconvenient for interaction. Unlike them,
RF-Sauron attaches a conformal and battery-free RFID tag in
the eyeglass frame, enabling a contactless gesture interaction
paradigm. While RF-Sauron is independent of lighting con-
ditions and does not raise privacy concerns. Recently, some
works have employed wireless sensing technologies to perform
interaction in smart glasses. For example, ReliableEye [31]
employs a millimeter-wave radar mounted on the glasses
to sense eye blinking and activities. RF-Mic [32] installs a
microphone on the glasses to model and analyze facial speech
dynamics using acoustic signals. However, these sensing
devices cannot conform to the eyeglass frame and add extra
weight, leading to user discomfort. In contrast, RF-Sauron
integrates a conformal RFID tag within the frame, which is
lightweight and does not obstruct the user’s view.

B. RFID-Based Sensing

RFID technology has been widely applied in many sens-
ing applications, such as localization [19], [33], activity and
gesture recognition [34], [35], [36], object interaction detec-
tion [37], [38], and target material identification [39]. For
example, GRfid [40] delivers a DTW-based method to achieve
precise and stable gesture recognition. RIO [41] leverages the
coupling effect of tags to sense touch gestures. RF-CGR [42]
transforms received phase information into images for gesture
recognition. Cyclops [43] designs a new RFID tag integrated
into a contact lens to sense intraocular pressure. Gastag [44]
integrates gas-sensitive material and RFID tags to sense differ-
ent gases. Unlike them, RF-Sauron targets a new application
to create a passive, contactless RFID smart glasses system for
gesture recognition.

C. Cross-User Gesture Recognition

Deep learning algorithms have been widely investigated in
many sensing [45], [46], [47] and recognition tasks [48], [49],

(a) (b)

Fig. 2. Phase of the received signal changes as the user’s hand moves through
the tag and antenna. (a) Examples of user gestures. (b) Signal decomposition
model.

including RFID-based gesture recognition [34]. To enable
cross-user gesture recognition, many research efforts have
been devoted. For example, some studies [50], [51] employ
transferring learning networks to adapt to the new user.
While effective, these solutions demand extensive data from
new users for fine-tuning, making them costly and labor-
intensive. Recently, some works have employed meta-learning
and contrastive learning to enable models to quickly adapt
to new tasks with only a small number of new samples.
For instance, MetaSense [52] proposes an adaptive deep
mobile sensing system utilizing only a few samples from the
target user to fine-turn the model. RF-Net [53] introduces a
unified meta-learning framework to enable one-shot human
activity recognition. Lai et al. [54] used self-supervised con-
trastive learning to achieve cross-domain gesture recognition.
While promising, the performance of these works signifi-
cantly degrades when there is a significant difference in the
distribution of data from the source domain and the target
domain. This is because existing works do not explore the
potential similarities in the data distribution under the source
and target domains to ensure the performance of the model
after migration. Instead, RF-Sauron proposes a novel cross-
attention mechanism-based contrastive learning network to
mine the potential similarities in data distributions across
different users, making the model robust to different cases.

III. PRELIMINARIES

A. RFID Basics

An ultrahigh frequency (UHF) RFID system typically con-
sists of a reader and some passive tags. The reader emits a
continuous periodic signal to activate nearby tags, and then the
tags alter their antenna impedances to reflect the signal back
to the reader. Subsequently, the reader can receive the signal,
including phase and amplitude information [27], [55].

To understand how a hand gesture affects the received
signal, we consider a typical multipath indoor scenario as
shown in Fig. 2(a). The signal propagates along three paths,
i.e., the Line-of-Sight (LoS) path, the reflection path from the
wall, and the reflection path from the user’s hand gestures. If
we assume there are q reflection paths from the moving user,
the received signal can be described as

s(t) = ASejφS +
∑

q

Aqe
j
(

2π
λ

∫
vq(t)dt+φdev

)

(1)
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Fig. 3. Three antennas capture phase and amplitude data for one instance of two gestures from a volunteer. (a) Circle clockwise. (b) Triangle. (c) Left Wipe.
(d) Right Wipe.
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Fig. 4. Antenna reads the phase and amplitude data of the Tick for different
user gestures. (a) User1. (b) User2.

where ASejφS is the combined complex signal containing the
LoS path and static multipath, Aq is the amplitude of the qth
reflected from the human body, vq(t) is the path length change
velocity corresponding to the qth path at time, λ denotes the
signal wavelength, and φdev is a constant phase offset induced
by the tag and reader circuit. According to (1), we can see that
when performing a gesture, the dynamic signal varies, which
leads to a variation of the phase and amplitude information
of the composite signal, as shown in Fig. 2(b). This implies
that the phase and amplitude of the received signal can be
used to detect the movement of the user, i.e., performing hand
gestures in front of the glass.

B. Feasibility Study and Analysis

We conduct a set of benchmark experiments to better
understand the correlation between the user gestures and the
signal readings. We attach an RFID tag (Alien-9640) in front
of the eyeglass frame and let the volunteers wear the eyeglass.
Then, we ask each volunteer to stand in front of the reader and
perform hand gestures in front of the eyeglass. The distance
between the tag and the reader is 1.5 m. In the first experiment,
we let one volunteer perform four gestures (Circle clockwise,
Triangle, Left Wipe, and Right Wipe) three times. Fig. 3 shows
the collected measurements of different gestures. We can see
that: 1) different gestures (Circle clockwise and Triangle) can
cause different phase and amplitude variations. This indicates
that the phase and amplitude variations can be utilized to
recognize different gestures and 2) similar gestures (Left
Wipe and Right Wipe) induce similar phase and amplitude

(a) (b)

Fig. 5. Design of the conformal tag for smart eyeglasses. (a) Embedding
positions. (b) Glass frame.

variations. It means that when recognizing similar gestures,
the system could lead to failure.

In the second experiment, we ask two volunteers to perform
the same gestures. The collected readings are shown in Fig. 4.
We observe that different users cause different phase and
amplitude reading changes for the same gesture. This result
indicates that the phase and amplitude readings carry adverse
user-related information irrelevant to gestures, which could
cause a wrong gesture recognition. In the third experiment, we
recruit 50 volunteers to wear the glass attached to the Alien-
9640 tags and perform a questionnaire that ask them if their
view was obstructed. The results show that they all feel that
their view is blocked.

In summary, to enable a nonintrusive, accurate, and scalable
gesture interaction system using smart eyeglasses, we need to
satisfy the following requirements: 1) designing an RFID tag
that is conformal with glass frames without obscuring the view
of users; 2) Devising a scheme to discriminate similar gestures
for accurate gesture recognition; and 3) introducing a scalable
approach such that the system can quickly adapt to a new user
with minimal human effort.

IV. SYSTEM DESIGN OF RF-SAURON

In this section, we first introduce a novel RFID tag design
that conforms to the eyeglass frame. Then, we present a
proposed multichannel network to achieve accurate gesture
recognition by exploiting antenna diversity in the spatial
domain. Finally, we propose a DDPA-based contrastive learn-
ing framework to accommodate new users quickly.

A. Conformal Tag Antenna Design

1) How to Integrate the Sensing Antenna: The goal of
RF-Sauron’s antenna design is to ensure users feel comfort-
able when wearing eyeglasses to perform hand gestures. To
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achieve this, two key factors that significantly impact the user
experience need to be solved. First, view blockage. Generally,
the light enters the eyes through the glass, so any obstruction
of the glass lens can impact a person’s vision. Thus, our tag
cannot obscure the glass lens and only can be deployed around
the glass frame, including the temples (A), the front edge of
the frame (B), and the upper edge of the frame (C), as shown
in Fig. 5(a). The second factor is tag position. As mentioned
earlier, we have three optional positions to deploy tags. When
the tag is placed in position A, the user needs to interact with
the gesture on the side of the glasses, which is extremely
inconvenient and increases the complexity of the interaction.
For position C, due to the orthogonal polarization between
the tag antenna and the transmitting antenna, it is impractical
to place the antenna in position C, which will result in the
inability to receive the signal.

Based on the above considerations, we ultimately select
position B for tag deployment. At this location, the user can
naturally perform gestures in front of the eyeglasses, aligning
with typical user interaction habits. Moreover, this position
ensures that the tag receives maximum energy from the
reader’s antenna and remains sensitive to the user’s gestures.
Therefore, considering the structure of the eyeglass frame
shown in Fig. 5(b), we design the shape of RFID tag to
seamlessly fit within the frame.

2) Impedance Matching: Based on the above analysis, we
select position B for deploying our sensing tags. However, due
to the size constraints of a typical eyeglass frame, such as
the antenna being limited to 140 mm in length and 3 mm in
width, achieving impedance matching between the designed
conformal antenna and the chip becomes a challenge. As
a result, the working range sharply decreases from several
meters to just 70 cm, significantly limiting gesture recognition
scenarios. To enhance the working distance, we need to
achieve impedance matching

Za = Z∗
c (2)

where Za and Zc are the impedance of the antenna and the
impedance of the chip, respectively.

To achieve impedance matching, a straightforward method
is to fine-turn the size of the dipole antenna. However, due
to the shape constraint of eyeglasses, the fine-turn scheme
is infeasible in our case. To overcome this problem, we
borrow the idea of a T-Match ring [56] to facilitate impedance
matching between the antenna and the chip. Specifically, we
construct an equivalent circuit to illustrate the condition of
impedance match, as shown in Fig. 6, which includes a dipole
antenna with a T-match circuit and expressed the impedances
of the three structures in antenna circuit formulas

⎧
⎨

⎩

Za = ZT + ZD, Antenna Circuit
ZT = jωLt, T-match Circuit
ZD = Rd + jωLd − jω

Cd
, Dipole Antenna

(3)

where ZT , ZD are the impedance of the T-match circuit and
dipole antenna, respectively. j is the imaginary unit, and ω

is the angular frequency. Lt is the inductance of the T-match
circuit [57], while Ld and Cd denote the inductance and
capacitance of the dipole circuit, respectively.

Fig. 6. Equivalent circuit of RFID tag.

Fig. 7. Optimized impedance matching of tag designs.

Fig. 8. Gain of the optimized RFID tag.
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Fig. 9. Three antennas capture phase data for one instance of two gestures
from a volunteer. (a) Antenna1. (b) Antenna2. (c) Antenna3.

Based on the equations above, the real part of the antenna
impedance is related to resistance, while the imaginary part is
associated with inductance and capacitance. To compensate for
the degradation introduced by the conformal design in antenna
impedance, we need to adapt the form factors of the antenna.
However, the length and width are fixed due to the constraint
of the form of eyeglasses, we cannot directly fine-tune the
dipole structure. To overcome this issue, our basic idea is to
modify the T-match structure for the impedance compensation.
Specifically, we optimize the size of the T-matching network
through odd–even analysis to effectively change the antenna
impedance. We then increase the inductance by bending the
antenna structure, as shown in Design 2 in Fig. 7, thereby
increasing the imaginary part of the antenna impedance.
Finally, we introduce a new L-shaped feeding mode into the
antenna design, as shown in Design 3 in Fig. 7. Compared to a
balanced feed, the vertical and horizontal parts of the L-shaped
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Fig. 10. Feature extraction network in our RF-Sauron.

feed will generate inductance and capacitive, respectively,
which affect the imaginary part of the antenna impedance.

We now leverage the electromagnetic simulation software
to verify the effectiveness of our scheme. Fig. 7 shows the
impedance of the three antenna design methods during the
improvement process, we can see the real and imaginary
impedance of the final tag design approach to the impedance
of the chip. Additionally, we also simulate the radiation gain
in different frequency bands, as shown in Fig. 8, from which
we can see that the gain of the optimized antenna is close to
2.5 dB within the range of 902–928-MHz band.

B. Gesture Feature Extraction

As mentioned in Section III-B, similar gestures would cause
similar signal patterns for a single receiving antenna, leading
to a failure to recognize them. To overcome this issue, our
basic idea is to exploit spatial diversity from multiple RFID
antennas to extract different signal variations. To illustrate
this, we conduct a benchmark by deploying three receiving
antennas in three locations, and then ask the same volunteer
to perform left wipe and right wipe gestures. The received
measurements are plotted in Fig. 9. We can observe that the
signal patterns induced by the two gestures are the same in
Antenna 1, but are significantly different in Antennas 2 and 3.
This result implies that we can combine different data values
of the backscatter signal from different antennas to extend the
features of different gestures, thus increasing the accuracy of
gesture recognition

C = Zp ⊕ Za. (4)

To extract distinguished gesture pattern features, a challenge
we face is how to effectively incorporate the measurements
from spatially deployed antennas. To address this issue,
we propose a weight-based multichannel fusion network to
individually extract gesture pattern features and assign dif-
ferent weights to each antenna to combine these features
for final gesture recognition. The basic feature extraction
network framework is shown in Fig. 10. Specifically, we first
design a self-attention block to pay more attention to data
from antennas that contain more information about the user’s
movement. When a user performs a gesture, the block allows
the model to assign higher weights to these antennas with
pronounced reading changes, thus guiding the model to focus
on the most informative features related to the gesture. We
take the phase reading data as an example to illustrate the
weighting process. Let Xp denote the phase matrix with a size
of K × M, where K is the number of antennas and M is

Fig. 11. t-SNE visualization of the combined phase and amplitude features.

Fig. 12. Architecture of the contrastive network used in RF-Sauron.

the length of the phase reading length. The weighted phase is
written as

wk
p =

exp
(

ek
p

)

∑K
j=1 exp

(
ej

p

) (5)

where ek
p is given by

ek
p = f

(
gk

p, Xk
p

)
(6)

where f is the final fully connected layers, and gk
p is the weight

parameters of the hidden layers. We obtain the weighted
antenna phase data Zp by multiplying the two matrices Xp and
Wp together as follows:

Zp = Xp ⊗ Wp. (7)

In the same way, we can obtain the weighted amplitude Za.
With the attention mechanism, we can effectively speed up the
feature extraction process. Phase and amplitude information
are concatenated as follows.

We then pass C into the 4-layer ResNet block to capture
unique features from phase and amplitude information. We
choose ResNet as the backbone of the feature extraction
network due to its identity shortcut connections, which keep all
information passing the network while avoiding the problem of
gradient explosion or vanishing in deep networks. Specifically,
the shortcut connections could be written as

V = H(C, wC) + C (8)

where H(C, wC) represents the residual mapping learning
function, wC denotes the parameters of each layer, C is the
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Fig. 13. Normalized phase readings before and after the DDPA process of user1 and user2 performing the gesture “Circle clockwise” from three antennas.
(a) Antenna1 of User1. (b) Antenna2 of User1. (c) Antenna3 of User1. (d) Antenna1 of User2. (e) Antenna2 of User2. (f) Antenna3 of User2.

input vector of the ResNet block, and V is the output vector
of the ResNet block. Then, the extracted features would be
applied to a global pooling layer to scale the magnitude of the
data to a uniform scale across different antennas.

To efficiently fuse the data from the individual antennas
together while preserving the original representation of the
features, we perform a splicing operation on the fused phase
and amplitude data from the different antennas

Y = (g(V1), g(V2), g(V3), . . . , g(Vk))
T (9)

where g(·) denotes the global pooling function. To visualize
the effectiveness of the fusion scheme, we use t-SNE [58]
to project the extracted features into a 2-D feature space.
As shown in Fig. 11, the learned features of all gestures
are independently distributed without any overlap, which
showcased the improved performance of our multichannel
attention network in extracting distinct features.

C. Accommodating New Users

In this section, our goal is to rapidly adapt the network
to new users. As discussed in Section III-B, different users
exhibit unique behavioral patterns even when performing the
same gesture. Consequently, the features extracted from phase
and amplitude measurements are inconsistent across users,
rendering the feature extraction network trained on previous
users less effective for new ones. To tackle this problem, prior
works adopt conservative learning to extract domain-invariant
features [27], [59], [60] to eliminate the differences introduced
by users’ unique habits. However, it requires a large amount of
data and very complex model training techniques to achieve a
relatively good result, which is inappropriate for the low-cost
new user adaptation network we want to achieve.

In our RF-Sauron, we propose a novel DDPA-based con-
trastive learning framework, as illustrated in Fig. 12. The basic
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Fig. 14. Normalized distances and similarity scores for data of two users
performing “Right Wipe.”

idea is to introduce a novel DDPA mechanism, which lever-
ages the observation that although some feature dimensions
may differ for different users, many similarities remain in
other dimensions. This inspires us to assign weights based
on the similarity of the input feature pair (e.g., Y1 and Y2),
where higher weights are assigned to similar dimensions and
lower weights to dissimilar ones. By minimizing the influence
of dissimilar dimensions in the loss calculation, the result
becomes predominantly determined by the similar feature
dimensions. Consequently, this mechanism allows the model
to focus on shared patterns across different users, improving
recognition performance despite variations in user behavior.
Next, we will detail the DDPA mechanism.

1) Diagonal Dot-Product Attention: We first feed the input
data pair Y1 and Y2, which are extracted features as described
in Section IV-B, into a fully connected layer with shared
weights

Y1 = Y1 × WT + b (10)

Y2 = Y2 × WT + b (11)
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Fig. 15. Experimental setups.

Fig. 16. Schematic of 18 gestures.

where WT represents the parameters of the fully connected
layer and b is the bias. The purpose of using a weight-
sharing fully connected layer is to map the features of sample
pairs into the same feature space, ensuring that the computed
distances between positive and negative sample pairs become
more physically interpretable.

Here, we define similar and dissimilar dimensions, respec-
tively, as feature dimensions that exhibit and lack similar
patterns. For each of the two pairwise users who perform
the same gesture, we consider a phase or an amplitude
measurement from one antenna as one dimension, and an input
data of six dimensions in total is measured for both the phase
and amplitude from three antennas. As illustrated in Fig. 14,
the three phase and amplitude dimensions are indexed by ABC
and DEF, respectively. Dot-product is employed to calculate
the similarity of the features that corresponds to the different
antennas for each input feature pair as

S =
(

Y
T
1,1Y2,1, . . . Y

T
1,iY2,i . . . , Y

T
1,KY2,K

)T
(12)

where i is the index of the K antennas, Y1,i and Y2,i are the
subsequence of the feature array split by the corresponding
antennae index i, and S is the final similarity matrix containing
all the score calculated at the corresponding antenna index.

The normalized similarity score [see (12)] is employed
in our DDPA to strengthen similar dimensions and weaken
dissimilar dimensions, which allows similar dimensions to
carry greater weight when computing the Euclidean distance
between a pair of two samples. As shown in Fig. 14, the
similarity scores are categorized into three distinct levels

based on their values. They include Low level: [0, 0.33),
Medium level: [0.33, 0.66), and High level: [0.66, 1.0]. For
dimensions with high similarity, their values are enhanced
by our proposed DDPA, leading to a greater weight in
distance calculations. Conversely, the values of low similarity
dimensions diminished, resulting in a reduced weight in the
computation of distances. Unlike the traditional attention
mechanism, we consider the similarity relationship between
the feature subspace from each corresponding antenna pair in
each input feature pair. This strategy led to reduced impact of
dissimilar features in the loss function, guiding the model to
focus on the feature pairs with greater similarities.

Finally, a softmax layer is employed to normalize the
resulting similarity matrix and convert the similarity scores
into coefficients that should be weighted to the features

Y ′
1 =

(
eS1 Y1,1, eS2 Y1,2 . . . , eSK Y1,K

)T

∑K
j=1 eSj

(13)

Y ′
2 =

(
eS1 Y2,1, eS2 Y2,2 . . . , eSK Y2,K

)T

∑K
j=1 eSj

. (14)

2) Contrastive Loss Function: Next, our goal is to con-
struct the contrastive loss function to minimize the feature
distance between samples of the same class and maximize
the feature distance between samples of different classes.
Specifically, for each sample in the dataset, we randomly
select another sample from the same class to form a positive
sample pair and select a sample from a different class to
form a negative sample pair. This approach ensures a balanced
number of positive and negative pairs while reducing the
total number of sample pairs, which in turn alleviates the
computational burden on model training and enhances training
efficiency. Then, we employ the following contrastive loss
function [61] denoted as L(W) to calculate the distance
between samples in one data pair:

L(W) =
N∑

i=1

l · [
Di

W(f (g(X1, X2)))
]2 + (1 − l)

·[max
(
M − Di

W(f (g(X1, X2))), 0
)]2

(15)

where W denotes the feature extraction network, N is the batch
size, f (·) is the DDPA function, g(·) is the feature extraction
process, and DW stands for the MSE distance function [62] of
the features out of the two feature extraction networks. Here,
we denote the labels as l = 1 where the two input samples
belong to the same category, and l = 0 if X1 and X2 belong
to different categories.

To verify the effectiveness of our proposed DDPA mecha-
nism, we perform the DDPA operation directly on the original
input sample pairs. Fig. 13 illustrates the data waveforms
before and after the operation. We can see that the similar
features are strengthened while the dissimilar features are
weakened, indicating the effectiveness of our method.

3) Model Fine-Tuning: To adapt the pretrained model to
new users, we employ fine-tuning to retrain specific model
parameters. Unlike approaches that retrain the entire network,
we only adjust certain parameters. The rationale is that
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while the phase and amplitude characteristics of signals from
different users may vary in detail, the overall envelope change
remains largely consistent. This allows us to efficiently transfer
model parameters from a trained user to a new user with
minimal time cost, speeding up the adaptation process.

4) Multiple Gesture Recognition: Traditional contrastive
networks function as binary classifiers, determining whether
two samples belong to the same class based on feature dis-
tance. As such, they are not directly applicable for multiclass
gesture classification. To address this, we modify the con-
trastive network’s classification approach to handle multiclass
tasks. Instead of simply comparing two samples, we match the
test sample against all training samples, sequentially compute
the average distance of the test sample to each class, and then
assign the gesture category with the smallest average distance
as the classification result. The computational process of this
classification is given by

ŷ = arg min
c∈{1,2,...,C}

⎛

⎝ 1

nc

∑

x∈Xc

d(xtest, x)

⎞

⎠ (16)

where c is the category index, ranging from 1 to C, the size of
all categories, nc is the number of date pairs of category c, XC

represents all the data from category c, d(·) is the Euclidean
distance calculation process, xtest is the test sample waiting to
be categorized, and ŷ is the final predicated label.

V. IMPLEMENTATION

A. Hardware Implementation

RF-Sauron’s system setup is illustrated in Fig. 15, which
includes a prototype eyeglass frame embedded with a custom-
designed RFID tag antenna, an Impinj Speedway R420 reader,
and three directional antennas (each with 9-dBi gain and a 70◦
beamwidth in both elevation and azimuth). The reader operates
at 922.625 MHz with a transmission power of 32 dBm.
Antenna 1 is positioned directly in front of the participant,
while Antennas 2 and 3 are angled at plus and minus 45◦,
respectively, to face the participant from different angles.

B. Data Collection

For controlled experiments, we recruit 21 volunteers
(12 males and 9 females). Each volunteer wears the eyeglass
and repeats 18 different gestures (shown in Fig. 16) 20 times
at six different distances. The experiments are conducted
extensively in two environments: 1) a laboratory and 2) a con-
ference room (default setup), as shown in Fig. 15. Participants
perform the gestures based on their own interpretation. For
each environment, we ensure that only one volunteer is present
in the sensing area, and no other person is moving nearby.
All the experiments have been approved by our Institutional
Review Board (IRB). We use accuracy as a metric to evaluate
the performance of RF-Sauron.

C. Neural Network Training

We trained the gesture recognition model in our RF-Sauron
system for 30 epochs on an NVIDIA GeForce RTX 2080Ti
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graphics card, with a batch size of 8 and a learning rate of
1e-4. The evaluation is performed on the same GPU.

VI. RESULTS AND DISCUSSION

A. Overall Performance

1) Gesture Recognition Accuracy: To evaluate the gesture
recognition performance of RF-Sauron without considering
new users, we select data from the conference room as the
dataset. We use 80% of each user’s measurements for training
and 20% for testing. Fig. 17 presents the confusion matrix
for 18 gestures, clearly showing that RF-Sauron achieves an
average accuracy of 98.86%. This result demonstrates the
effectiveness of the proposed method.

2) Cross-User Gesture Recognition Accuracy: To assess
RF-Sauron’s ability to adapt to new users, we employ leave-
one-out cross-validation on the dataset collected from the
conference room. Specifically, the data from 20 users are
used as the training set, and the remaining user is treated
as the new user. This process is repeated for each user. For
each new user, we use n samples (n-shot) to fine-tune the
pretrained model, and the remaining samples are used to test.
Fig. 18 plots the results when varying the number of shots
from 1 to 5. As expected, the accuracy gradually improves with
the increase in the number of shots. When using five shots,
RF-Sauron achieves an average accuracy of 98.75%. These
results demonstrate that RF-Sauron can quickly adapt to new
users with minimal data, maintaining high performance.

B. Microbenchmarks

1) Verification of the Diagonal Dot-Product Attention
Mechanism: To validate the effectiveness of the DDPA mech-
anism, we conduct an ablation study with the following
setups: first, we use the complete model (denoted as DDPA)
as the benchmark. We then evaluate three variations: one
where the DDPA mechanism is replaced by a traditional
attention mechanism, another where it is replaced by a CNN
network, and a final version where DDPA is removed entirely,
degenerating the model to a basic template matching method.
The results are shown in Fig. 19. We observe that RF-Sauron
achieves an average recognition accuracy of 71.25%, 76.25%,
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Fig. 22. Performance of different tag designs.

92.50%, and 98.75% for template matching, CNN, traditional
attention, and DDPA, respectively. These results highlight the
significant improvements provided by the DDPA mechanism,
demonstrating its effectiveness in improving the model’s ges-
ture recognition performance.

2) Verification of the Feature Fusion: To evaluate the
impact of the feature fusion (phase and amplitude readings) on
RF-Sauron, we conduct an ablation study with the following
scenarios: 1) Phase Features Only (P): This scenario involves
training and testing the model using only phase features;
2) Amplitude Features Only (A): In this case, the model
is trained and tested using only amplitude features; and
3) Combined Features (A + P): This scenario fuses both
phase and amplitude features for training and testing. The
results are plotted in Fig. 20. We can see that the performance
of the A + P combination achieves the best performance
(98.75%), and the performance of phase-based (66.87%)

is better than amplitude-based (48.13%). This is because
phase readings involve more fine-grained information than
amplitude readings. These results demonstrate the proposed
fusion scheme can efficiently extract gesture features, and thus
achieve a better performance.

3) Verification of the Multiple Antennas: We now evalu-
ate the impact of the number of antennas on RF-Sauron’s
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performance. Specifically, we vary the number of antennas
from 1 to 3, and the results are illustrated in Fig. 21. As shown,
recognition performance improves as the number of anten-
nas increases. For example, with 1–3 antennas, RF-Sauron
achieves an average accuracy of 56.25%, 77.55%, and 98.75%,
respectively. The reason is that a small number of antennas
can capture only a limited set of gesture features, making it
difficult to distinguish between most gestures. Therefore, three
antennas are used as the default setup in our RF-Sauron.

4) Generalization of Conformal Tag Design: To assess the
generalization of the conformal tag design, we select three
different commodity eyeglasses and fabricate three conformal
tags based on their respective shapes. Each volunteer is asked
to wear each pair of eyeglasses and perform the designated
gestures, following the same experimental setup as the default
configuration. The results, shown in Fig. 22, indicate that
RF-Sauron consistently achieves an average accuracy above
97.75% across all three eyeglass designs. This demonstrates
the effectiveness and generalizability of the conformal tag
design for various eyeglasses.
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C. Impact of Different Factors

1) Environments: To evaluate the robustness of RF-Sauron
in various environments, we conduct experiments in two indoor
settings: 1) a laboratory and 2) a conference room. The experi-
mental setup remained consistent with our default configuration
in both locations. The results are plotted in Fig. 23. Notably, the
performancein theofficeenvironmentshowsonlyslightvariation
compared to the laboratory, with both environments achieving
an average accuracy of approximately 96.37%. This outcome
demonstrates that RF-Sauron can maintain stable performance
across diverse settings. The underlying reason for this robustness
is the proposed contrastive learning framework with DDPA,
which effectively extracts common gesture-related features that
are invariant to environmental context.

2) Comparison With Prior Works: We compare
RF-Sauron’s method with three advanced methods: 1) ResNet-
based method (Tgt [52]); 2) transfer learning-based method
(TL [63]); and 3) meta-learning-based method (RF-Net [53]),
where the latter two methods are used to solve the cross-
domain problem. Specifically, we calculate the average
accuracy in scenarios where instances from one user are
used for testing while instances from the remaining users
are used for training. Note that TL, RF-Net, and RF-Sauron
employ five samples to fine-tune the pretrained model. Fig. 24
presents the result, from which we can observe that RF-Sauron
outperforms the other state-of-the-art methods. In particular,
TL and RF-Net only achieve an accuracy of 73.33% and
80.35%, respectively. This is because they struggle to resolve
the differences in data distribution between the target and
source domains caused by variations in user gesture habits,
resulting in a degradation that prevents them from achieving
high accuracy. In contrast, RF-Sauron introduces a novel
conservative learning scheme that effectively mitigates the
impact of user-specific gesture patterns, resulting in superior
performance.

3) Feature Extraction Network Layers: To evaluate the
performance of our system across different layers of the
feature extraction network, we conduct experiments under a 5-
shot learning condition. The model is trained using between 1
and 6 layers of the ResNet block, which is employed to extract
features from both phase and amplitude data. As shown in
Fig. 25, the model’s performance improves with an increasing
number of layers, achieving a peak accuracy of 98.75% at four
layers. However, performance declines beyond this point due
to overfitting, as excessively deep networks can lead to reduced
generalization and increased time and computational costs.
Therefore, we selected four layers for the feature extraction
network to strike an optimal balance between performance and
computational efficiency.

4) Antenna–Tag Distances: To investigate the impact of
the antenna–tag distance on RF-Sauron’s performance, we
vary the distance from 1.5 to 9 m with a step of 1.5
m. At each distance, participants are instructed to perform
gestures using our custom-designed conformal tag. As shown
in Fig. 26, gesture recognition accuracy decreases with the
distance, which is possibly due to the reduced strength of the
received signal. Despite this unfavorable trend, the average
gesture recognition accuracy of our RF-Sauron appears to

be comparable to commercial RFID tags (e.g., Alien-9640),
where a remarkable 80% recognition accuracy is achieved at
the maximum distance of 9 m. This result affirms the capability
of our system for long-range sensing and robustness against
deployment distances.

5) Multiple Users: Environment changes can affect the
system performance if not properly addressed. Multiuser
sensing is particularly challenging in RF sensing due to
interference caused by mixed reflected signals from multiple
targets at the receiver. Within a certain distance range (e.g.,
less than 4.5 m), the recognition accuracy decreases notably
as the number of interfering users increases. However, this
jamming effect diminishes when interferers are more than
4.5 m away from the target user, where recognition accuracies
consistently remain above 93% regardless of the number of
users or variations in their pairwise distances. It is observed
that while the recognition may become challenging when the
pairwise distances fall below the threshold, our RF-Sauron
has demonstrated promising results for multiuser when they
present more than 4.5 m away from each other. Improved
robustness to multiple users may benefit from future investi-
gation of multidimensional signal processing techniques [64]
for dynamic interference mitigation.

6) Body Movements: Body movements, such as eye blink,
mouth motion, and head movement, can potentially affect the
accuracy of gesture recognition. In our RFID-based gesture
recognition system, the impact of eye blink and mouth motion
on gesture sensing is relatively low. These movements are
typically subtle, rapid, and involuntary, causing only brief
fluctuations in the RFID signal. Since the signals of these
movements have a higher frequency compared to those of
intentional hand gestures, they are less likely to disrupt
the overall gesture recognition process. To further minimize
potential impacts, signal processing techniques or machine
learning models can be employed to filter out these fluctua-
tions, preserving only signals that are relevant to gestures. In
contrast, head movements (e.g., tilting, turning, and nodding)
may have greater impacts to RFID signals, particularly because
the head is often located near or directly in the line of sight
of RFID tags embedded in eyeglass frames. These movements
may alter the relative angle between the RFID tag and the
antenna, thereby changing the reflection patterns and poten-
tially leading to false detections or misinterpretation of gesture
signals. One solution to address this challenge in the future is
the use of a low-pass filter to filter out the high-frequency noise
caused by head movements. Alternatively, head movements
may be labeled and included in the recognition model training.

VII. CONCLUSION

In summary, we introduce RF-Sauron, an RFID-based mid-
air gesture recognition system for smart glasses. Through
combined hardware and neural network designs, our RF-
Sauron is capable of discriminating similar gestures and
adapting to new users efficiently. State-of-the-art performance
of our RF-Sauron system is demonstrated through a series of
extensive real-world experiments. The presented RF-Sauron
is currently limited to a relatively static environment. The
robustness of our system to dynamic factors may be improved
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by addressing multiple adjacent moving interferences as well
as significant head movements through additional data labeling
and training of our model.
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