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RFusion: Dynamic Multimodal RF Fusion for
Few-Shot Human Activity Recognition
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Meng, Xiaojiang Chen

Abstract—Multimodal learning plays a critical role in Radio-
Frequency (RF)-based Human Activity Recognition (HAR). How-
ever, most existing methods require a large amount of dense
annotation across all modalities during the pre-training and fine-
tuning stages, which is laborious and expensive. In this work, we
introduce RFusion, a dynamic multimodal fusion model for RF-
based few-shot human activity recognition. Our model makes use
of unlabeled multimodal RF data in the pre-training stage, which
further benefits the performance of the few-shot fine-tuning in
the absence of modalities. Specifically, RFusion introduces a
novel pre-training framework which involves two novel modules
(a guider and an arbiter) for a dynamic contrastive learning
strategy. This novel pre-training framework allows accurate
detection of the shared and unique features from diverse RF
modalities. Additionally, a scalable multi-head attention scheme
is also introduced to fine-tune the pre-trained model in few-shot
settings. Extensive experiments on publicly available multimodal
datasets demonstrate the effectiveness of RFusion. The proposed
RFusion achieves average HAR accuracy improvements of 25.8 %
and 12.2% over a number of state-of-the-art supervised unimodal
learning methods and contrastive learning baselines.

Index Terms—Human Activity Recognition, RF Sensing, Mul-
timodal Learning, Few-shot Learning

I. INTRODUCTION

Human Activity Recognition (HAR) has been widely used
in many applications, such as smart homes [1]-[6], health
monitoring [7]-[10], and smart factories [11]-[15]. Com-
pared to vision-based solutions [16], [17], HAR based on
radio frequency (RF) techniques such as WiFi, RFID, and
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Figure 1: Application scenarios and principle of RFusion.

mmWave is particularly attractive due to its contact-free,
privacy-preserving, and light-invariant properties.

Early RF-based HAR systems mainly rely on a single sens-
ing modality [18]-[20]. Recently, multimodal sensing [21]-
[24] has emerged, where each sensing modality makes a
unique contribution to the recognition of the same activity and
offers a new perspective. Despite promising progress, directly
adopting existing multimodal methods developed for images,
text, and audio to RF signals is non-trivial. First, RF modalities
exhibit stronger heterogeneity than typical RGB—text—audio
pairs. For example, different RF modalities (e.g., WiFi, RFID,
and mmWave radar) work at their respective frequencies,
protocols, and hardware, which may lead to disparities in the
dimensions and patterns of the measured signals. In addition,
RF data faces severe label scarcity. Unlike images, where
human activities can be manually annotated from videos,
raw RF signals are complex-valued, phase-sensitive, and not
directly interpretable. Even with auxiliary cameras or IMUs,
synchronization and calibration overheads make large-scale
annotation costly and labor-intensive.

What is more, many existing multimodal approaches assume
that the same set of modalities is available from pre-training
to deployment [25]—[27]]. However, this assumption is difficult
to maintain in RF modality scenarios. In reality, RF modalities
are usually scarce due to deployment costs, many HAR
applications only deploy one or two RF modalities, like a WiFi
router in a smart home, as demonstrated in Fig.

To this end, we ask the following question: Can we
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design an RF-based multimodal framework that relies on
limited labeled RF data and performs effectively in RF
modality scarcity scenarios while retaining full-modality per-
formance? 1If this vision is realized, we can reap several
benefits. First, it would significantly reduce annotation costs.
Second, this framework enables cross-modal sensing while
achieving performance comparable to that of the full-modality
setting. For example, a single RF modality, like WiFi, could
achieve recognition results comparable to those obtained by
using multiple modalities, such as WiFi, mmWave, and RFID
combined.

To harvest these benefits, in this paper, we present RFu-
sion, a multimodal RF representation learning framework
that leverages unlabeled multimodal RF data for pre-training
and supports few-shot adaptation under modality-missing de-
ployments, as shown in Fig. At a high level, RFusion
first uses modality-adapted encoders to extract latent features
from heterogeneous RF modalities. On top of these encoders,
RFusion performs RF-tailored cross-modal pre-training to
learn both shared and modality-unique representations, and
then fine-tunes the trained model using a few labels during
the deployment stage. To build this idea into a practical
system, the main challenge we face is how to effectively learn
the mutual information between modalities while extracting
unique information from different RF modalities.

To address this challenge, in the pre-training stage, RFu-
sion designs a novel cross-modal feature contrastive learning
network. Specifically, RFusion designs a guider module to
evaluate the alignment of internal feature vector intervals
in real-time during contrastive learning. The module allo-
cates more attention to poorly aligned intervals, enabling the
network to extract highly consistent features across modal-
ities. Furthermore, to ensure the guider module effectively
allocates attention, RFusion employs an adversarial guiding
strategy, maximizing the advantage of guided learning over
unguided learning to optimize attention distribution. Next,
to obtain unique information from each modality, RFusion
integrates an entropy-based arbiter module that evaluates the
contribution of each modality by analyzing the entropy of
pseudo-classification features from different RF modalities.
This module assigns relative attention scores, guiding how
each modality’s unique knowledge contributes to the final
loss calculation and ensuring effective utilization of distinctive
information to enhance overall model performance. The above
schemes augment RFusion with a cross-modal capability,
enabling it to effectively integrate and learn from diverse RF
modalities.

In the fine-tuning stage, a multi-head attention network is
designed to improve the performance of RFusion few-shot
learning from various missing RF modalities scenarios. This
design demonstrated improved performance in the detection of
intra-modal information in the single-modal case, as well as
the capturing of correlations and complementary information
between modalities in the multimodal case.

The performance of our RFusion system is evaluated on
two public datasets XRF55 [28] and MM-Fi [29]. The main
contributions of RFusion are summarized as follows.

e We present RFusion, a multimodal RF representation

learning framework that learns from unlabeled RF data
and supports few-shot human activity recognition, while
maintaining robust performance under diverse modality-
missing configurations.

o« We design an RF-tailored Guider—Arbiter pre-training
scheme that couples alignment-aware guidance with un-
supervised, entropy-based modality weighting, so that
shared information is extracted across RF modalities
while preserving their unique RF signatures.

« We validate the effectiveness of RFusion with extensive
experiments. RFusion achieves average accuracy gains
of 25.8% over supervised unimodal methods and 12.2%
over contrastive learning baselines, demonstrating clear
advantages in modality-missing scenarios.

II. PRELIMINARY

In this section, we first present the sensing principles of
common RF modalities. Then, we conduct a set of benchmarks
to motivate the design of RFusion.

A. Basics of Different RF Modalities

WiFi. WiFi sensing techniques typically adopt Channel State
Information (CSI) to depict the channel frequency response
(CFR) of the propagation paths [30]-[34)], which can be
expressed as:

H:(H(f1)7H(f2)v“‘vH(fK))’ (1

where H(fy) is the CFR for subcarrier k, and K is to-
tal number of subcarriers. For a MIMO WiFi system, the
measured CSI for each data packet is a N x M x K
complex 3D matrix, where N and M represent the number
of transmitting and receiving antennas, respectively. Note that
H(fi) = [ H(fo)lle“H00), where ||H(f)|| and ZH(fy)
denote the amplitude and phase of the propagation paths,
respectively. Both CSI phase and amplitude information can
be used to sense human activities.

RFID. An RFID sensing system usually comprises an RFID
reader and several passive RFID tags. By emitting a Con-
tinuous Wave (CW) periodic signal from the reader antenna,
the passive tag is activated and modulates its data on the
backscatter signals using ON-OFF keying. Finally, the reader
employs the Low-Level Reader Protocol (LLRP) [35] to
extract the phase readings from the received signals for
sensing human activities. Generally, the received signal can
be expressed as:

s(t) = age’?s + Zaqej(%" Jva(ydt+eacy) 2)
q

where ¢ denotes the number of reflection paths of the sensing
target, age’¥s is the complex signal of the LoS path and
multipath, a, is the amplitude of reflection, v4(t) is the length
change speed of the g-th path, ¢4, is the phase offset bias
of the device. By analyzing the variations of the phase and
amplitude readings, we can infer human activities.
mmWave Radar. The most commonly used mmWave radar
is FMCW radar, which obtains the distance, speed and angle
information of human activities by processing the received and
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Figure 2: The improvement of multimodality over unimodality.
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Figure 3: The existing solution is the “Multi-to-Multi” mode,
but the “Multi-to-Any ” |'| mode exists in the RF sensing
scenarios.

Table I: Performance of different numbers of fine-tuning
modalities on XRF55 dataset (Scene 3) .

Train Mode Uni-modality WiFi + RFID RFID + mmWave WiFi +mmWave All Modality
WiFi 56.27 65.98 ~ 68.10 70.27
RFID 38.80 49.69 4775 ~ 55.50

mmWave 47.56 ~ 65.75 67.97 69.56

transmitted frequency modulated continuous wave (FMCW)
signals. We represent the IF signal as [36]:

Sip(t) = Ae—32m{for(O+utr(®)—p*7(5)/2} 3)
where 7(t) = (2Ro+V;)/c, Ry is the distance from the target
to the radar, and p is the slope of the FMCW signal. The
original IF data is a four-dimensional matrix of PxT x Ax Q,
where () denotes the number of sampling frames, P is the
number of chirps in each frame, 7T is the length of the samples,
and A is the number of receiving antennas. By performing
FFT on each chirp of the original FMCW data, we can obtain
the distance matrix. Then, the Doppler velocity matrix can
be obtained by performing FFT on the distance matrix along
the range bin, and the range angle matrix can be obtained
by performing FFT on the velocity matrix along the antenna
dimension. A mmWave sensing system often uses range-
Doppler heat maps and range-angle heat maps to distinguish
different activities.

B. Motivation

In this section, we first verify the benefits of multimodal
learning using a real human activity RF dataset. Secondly,
we present the limitations of existing multimodal learning
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Figure 4: Performance of unimodal and multimodal models
with small samples.

methods. Finally, we evaluate the impact of a small number
of samples on recognition accuracy.

Benefits of Multimodality. Different RF modalities have
different wavelengths, protocols, and hardware, and thus have
different capabilities to represent human activities. We now
conduct a benchmark to showcase this phenomenon by select-
ing two modalities, i.e., WiFi and mmWave, and nine activities
on the XRF55 dataset [28]. Then, we build a classical 5-
layer CNN for evaluation. The result is plotted in Fig. [
We can clearly see that different modalities have different
performances in different activities. In particular, the WiFi
performs better for recognizing large-scale movements (e.g.,
walk, carry, and TaiChi), while the mmWave radar achieves
better accuracy for small-scale movements (e.g., Turn, Jump,
and Drink). This is because the mmWave signal has a small
wavelength, and thus is more sensitive to subtle and small
activities. These results imply each RF modality can provide
different strengths in a specific activity sensing task, and we
can improve the recognition performance by carefully fusing
their information.

Impacts of Modalities. To fuse information from different
modalities, existing solutions [27], [37]—[41] hold an assump-
tion: the number of modalities in the pre-training stage is
the same as in the fine-tuning stage, as shown in Fig. [3(a).
However, this assumption is difficult to guarantee in RF-based
sensing scenarios. This is because RF devices are harder to
deploy than IMU sensors. In a real-world scenario, there are
typically small numbers of RF modalities, like one or two,
as shown in Fig. [B(b). This means traditional multimodality
learning approaches cannot be directly used in such RF-based
sensing cases, and we cannot gain the same performance as
all modalities exist. To illustrate it, we conduct a benchmark
experiment by varying the number of modalities in the fine-
tuning stage from 1 to 3. Table. [l presents the results. We can
observe that as the number of missing modalities increases, the
recognition accuracy decreases. Therefore, it is desired to seek
a solution that ensures the sensing system can achieve good
performance even when a different number of modalities are
missing in the fine-tuning phase.

Impacts of Data Size. Generally, to ensure a wireless sensing
system has good performance, the multimodality learning
model requires a large number of data for each RF modality
and needs online labeling during collection, which is extremely
difficult and causes huge human effort. To showcase the impact

'In this work, “Multi-to-any” is restricted to any subset of the pre-trained
modalities, namely single-modal, partial-modal, and full-modal configurations
within this fixed modality set.
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Figure 5: The framework of RFusion consists of multimodal pre-training stage and fine-tuning stage.

of different numbers of training data on the performance, we
vary the number of label samples from 2400 to 120 and plot
the result in Fig. @] We can see that when the number of
labeled samples is 480, the average accuracy of unimodal
recognition is only 38.8%. Although the effect of multimodal
fusion is improved compared to unimodal, it is only 62.1%
of the recognition accuracy. This means that it is difficult
to learn the characteristics of complex human activities using
only limited labeled samples.

III. RFUSION SYSTEM
A. Overview

Problem Formulation: The RFusion system aims to learn
knowledge from a large number of unlabeled multimodal
samples to enhance fine-tuning performance in missing
modality scenarios (including unimodal fine-tuning and
multimodal fine-tuning). The dataset of unlabeled pre-
trained multimodal samples with M modalities is defined
as DM = {D™ .. Dm™M}, where D™ = {z{", .. 2}y
indicates that there are N samples in the m; modality. The
small set of labeled samples used for fine-tuning can be
expressed as DY, DV = {D™a1 ... D™k}, where m,, C M,
indicating that the modality in the fine-tuning set may be one
or more of the pre-training set. Then the dataset of labeled
My, M, .

samples for the m,, modality is D" = {& "/, ..., &5 "},
where T < N, because the number of labeled samples in the
fine-tuning set is much smaller than the number of unlabeled
samples in the pre-training set.

System Architecture: RFusion is a multimodal-assisted wire-
less sensing framework that leverages unlabeled multimodal
data in the pre-training stage to improve the performance in the
missing modality scenarios during the fine-tuning phase. The
core idea of RFusion is to fully exploit both shared (mutual)
and modality-specific (unique) information in multimodal
learning, thereby maximizing the utility of multimodal data
and boosting performance under limited labeled samples. The
system framework is plotted in Fig. [5] In the multimodal pre-
training stage, RFusion adopts a novel contrastive learning
scheme to train feature encoders on large-scale unlabeled
multimodal samples. A Guider module enhances the learning
of mutual information and strengthens cross-modal feature
alignment via dynamic attention, while an Arbiter module
exploits modality-specific information by assigning different
attention weights according to the classification performance
of pseudo-classification features from each modality, thus
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Figure 6: Example measurements from different RF modali-
ties, illustrating highly heterogeneous data representations.

achieving strong complementarity across modalities. In the
fine-tuning stage, RFusion uses a small amount of labeled
samples to further enhance the recognition effect of each
modality. For both unimodal and multi-modal fine-tuning
modes, we design a multi-head attention network to further
enhance the utilization of modality information.

B. RFusion System Pre-training

In the multimodal pre-training stage, we introduce a mul-
timodal scheme to extract mutual information and unique
information from a large number of unlabeled multimodal
data. This stage consists of a feature encoder module and a
contrastive learning module.

1) Modality-specific Feature Encoder: As mentioned in
Sec. |lI} the extracted sensing measurements from different RF
modalities are often diverse and non-uniform. Fig. [6] shows the
raw measurements for the same human activity by using three
different RF modalities. We can see that different modalities
have different data dimensions. For example, Fig. [f[a) plots the
WiFi raw amplitude readings sampled from 270 subcarriers,
Fig. [6[b) shows the RFID phase data from 23 tags, and the
radar data, plotted in Fig. [6[c), comprises a 3D Doppler-
range heat map. This means we need to unify the dimensions
of features from different RF modalities before performing
contrastive learning. Therefore, we need to design modality-
specific feature encoders tailored to the sampling structures
and noise characteristics of different RF modalities to ex-
tract structured representations from heterogeneous raw RF
measurements. The detailed design of each modality-specific
feature encoder is shown in Fig.

WiFi Encoder. For the WiFi modality, we adopt a
time—frequency convolutional network (TFCN) to capture the
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Figure 7: Feature encoder for each RF modality.

coupled temporal—spectral structure of CSI across subcarriers.
Since CSI is often dominated by static reflections, we first
remove the background component from the raw signal
via background subtraction to emphasize motion-induced
variations. Then, TFCN applies convolutions along both
time and frequency to jointly model temporal dynamics
and inter-subcarrier correlations, while dilated convolutions
enlarge the temporal receptive field to efficiently capture
long-range activity patterns without increasing network depth.
RFID Encoder. For the RFID modality, we adopt a temporal
convolutional network (TCN) to model the one-dimensional
temporal evolution of RFID phase. Since passive backscatter
signals are low-dimensional and highly sensitive to multi-
path, we construct multi-channel dynamic inputs from phase
differences and their higher-order temporal variations (e.g.,
velocity and acceleration) to suppress static components and
emphasize motion-induced variations. The TCN is built with
dilated causal convolutions to enlarge the temporal receptive
field while preserving causality, enabling efficient capture of
long-range, subtle activity-related phase dependencies without
increasing network depth.
mmWave Encoder. For the mmWave modality, we use Con-
vNeXt to encode the concatenated range—Doppler (RD) and
range—angle (RA) heatmaps, which capture motion dynamics
and spatial distributions. To remove non-informative static
reflections, we extract dynamic heatmaps by suppressing
the Zero-Doppler component in RD and subtracting a low-
frequency background from RA. ConvNeXt then performs
hierarchical spatial feature extraction with efficient chan-
nel mixing, providing strong spatial modeling for mmWave
heatmaps with a lightweight fully convolutional design.

To summarize the above encoder designs in a unified
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Figure 8: Illustration of feature spaces using existing methods.

formulation, suppose that each original sample is denoted as
o and contains M RF modalities. Let 67", m € {1,2,..., M},
represent the preprocessed measurement of the m-th modality
in the n-th sample after static background suppression. The
corresponding feature representation z" is obtained as

ayt =P (E™(00)), me{l,2,...,M}, (4)

where E™(-) denotes the modality-specific feature encoder
instantiated by different architectures for different RF modali-
ties, and P™ () represents the corresponding modality-specific
projection network that maps encoded features into a unified
embedding space.

2) Cross-modal Contrastive Learning: After obtaining the
features from different RF modalities, our next goal is to learn
the mutual and unique information knowledge from a large
number of easily available unlabeled multimodal samples. To
do this, prior methods employ advanced contrastive learning
methods [42], [43]. However, we find that these methods
have certain problems. As shown in Fig. [§] after contrastive
learning, there are still some misaligned intervals in the feature
vectors between modalities, which means that there is still a
wealth of mutual information between modalities that have
not been learned, making them have limited performance.
Besides, these contrastive learning methods overemphasize
the consistency features and ignore the unique features of
different RF modalities. To quantitatively characterize such
misalignment, we define the degree of alignment between two
modality-specific features. Given the features z)'* and z;'?
extracted from modalities m; and my for the same sample n,
we first apply ¢ normalization:

xm
Fm = _—n_ (5)
o fale

We then compute the Euclidean distance between the normal-
ized features:

EDy™e = |znt — 23, - (©)

Finally, the distance is converted into a soft alignment score
through a Gaussian kernel:

EDWMJTLQ 2
Align,™? = exp —7( n ) ) (N
202

where a larger value indicates a higher degree of alignment
between the two modality-specific feature representations.
Hence, to better extract the mutual and unique features from
diverse RF modalities, we respectively design a guided con-
trastive scheme and a pseudo-classification arbitration scheme.



JOURNAL OF KX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021

Guided Features

W,

Features

IB”’-‘-‘ ‘‘‘‘‘‘‘‘‘‘‘‘‘ S
[EF- sk
[Errm

]
Modality
ABC

Batch

I_
LGC

Encoder

o

Attention Region M

Dot-Product

Figure 9: Design of Guider module.

I WiFi RFID I mmWave
w/o Guider Aligned w Guider Aligned
Unaligned Unaligned
10F 10F
5F 5F
0 L y/ 0 L
5t ) v sk
10} ! | -0}
0 40 80 120 160 0 40 80 120 160

ED(WiFi, RFID, mmWave) = 0.82 ED(WiFi, RFID, mmWave) = 0.16

Figure 10: Guided feature alignment representation in feature
space.

Guided Contrastive Learning. To extract consistency fea-
tures from different RF modalities, our core idea is to design
a guider module, which evaluates the alignment effect of the
inter-modal feature vectors in real-time during the training pro-
cess and dynamically transfers more attention from the well-
aligned intervals to the poorly aligned intervals to strengthen
the learning of mutual information during the pre-training
process. The application framework of the guider module is
shown in Fig. [0] The guider model includes two parts: the
MLP network and the scoring layer. The feature vector x"
of each modality will be subjected to dynamic attention after
passing through the guider module, and finally become the
attention feature z]":

2" = Sigmoid(Norm(MLP(z]"))) - zi". 8)

?

To maximize the similarity of positive pairs and minimize the
similarity of negative pairs, we use the cosine distance between
the features within a pair to evaluate the similarity of pairs.

Then the similarity between any two samples z;'* and z;)*
can be expressed as:
mi ma\T
X, -z, 1
S ) = (@) - (23,%) 7 ©

e Tt
”‘Til :Z:iQ Lsim

where 41,42 € [1, N] represent the sample number, and
my,mg € [1, M] represent the modality under the sample.
tsim 1s an adjustable temperature parameter, properly adjusting
tsim value can lead to improved training performance (in
RFusion, ts;,, is set to 0.07 by default).

Next, we consider the feature vectors between different
modalities of the same sample as positive pairs, and the feature
vectors of different samples in the batch, whether they are in
the same modality or between different modalities, as negative
pairs. Assuming we have a batch of data of size N, then each
sample between two modalities under the RFusion method will
generate 2 positive pairs and 2N — 2 negative pairs. Then,
for the :th sample, the contrastive learning loss from the m;
modality to the mo modality can be expressed as:

lg" " = CL(ap™, 207) =

%

exp(s(z"",2"))

—log ~ (10)

;[6961?(8(2?“,2}”2)) +eap(s(z", )]

Note that the weights between these guider modules are
shared because they apply a unified attention score to the
features of different modalities on the same sample. Then,
when facing multiple modalities for joint contrastive learning
(for example, M modalities), the final multimodal guided
contrastive loss Lgc is:

Lo = L(lg,kg) =

N
1 mi,m ma,m
Vo o ko g+ kg, 197,

i=1 mi<mg

(1)

where [g denotes the collection of guided contrastive loss
terms, and kg is the corresponding weighting vector used
for the guided contrastive learning. Since we only focus on
the utilization of mutual information between modalities in
the role of the guider, we set the vector of kg to 0.5 by
default, that is, the same weight is applied to each modality.
Finally, we evaluate the alignment effect of feature vectors
under guided contrastive learning in the pre-training stage. As
plotted in Fig. [T0] after adding the guider module, the inter-
modal feature vectors under our method are highly aligned.
With the efficient use of mutual information, the clustering
effect between modalities has been significantly improved after
guidance (the distance between modalities has been reduced
by an average of 5.4 times).

Dynamic Attention in Guiders. The previous section in-
troduced how the guider module strengthens the training of
feature vectors by dynamically allocating attention, but a
question that follows is: how to make the guider clear about
how to allocate attention? To address this, we observe that
although the unguided contrastive loss Lp,se is not explicitly
optimized during guided contrastive learning, it consistently
decreases as training proceeds. Importantly, Lp,s. typically
lags behind the guided contrastive loss Lgc, indicating that
cross-modal alignment is primarily enforced by the Guider
rather than being fully absorbed by the encoder itself.

Based on this observation, we introduce an adversarial
training strategy for the Guider module. Specifically, the
Guider is optimized to enlarge the discrepancy between Lgc
and Lp,se, while the encoder parameters are optimized only
through Lgc. This adversarial objective encourages the en-
coder to progressively internalize the alignment capability
emphasized by the Guider. With continuous training, Lpgse
progressively approaches Lgc, indicating that the encoder
itself has sufficiently learned the cross-modal mutual infor-
mation emphasized by the Guider. As training proceeds, the
gap between Lp,s. and Lgco gradually shrinks, indicating
that the encoder has internalized the cross-modal alignment
previously enforced by the Guider. As a result, the Guider
can be safely removed during fine-tuning. Specifically, for
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Figure 11: Impact of adversarial training on the Guider
module.

unsupervised samples, the unguided contrastive learning loss
from the m; modality to the mo modality is:

B = CL(, )

12)

Keeping it consistent, the basic contrastive learning loss
Lpgse in a batch is:

LBase = ‘C(lvk)a (13)

where [ denotes the collection of unguided contrastive loss
terms, and k is the corresponding weighting vector used for
the unguided contrastive learning. Therefore, we design the
loss of the guider module as follows:

LBase

Lge

(14)

Ly = exp( “tg),

where t, is the temperature parameter. In the pre-training
stage, the training of the guider module is carried out together
with the guided contrastive learning. In Eqn.[14] we use exp(-)
to increase the gradient of the guider module training. Among
them, t, is the temperature parameter to improve the training
effect. We set it to 0.8 by default. In addition, the weighting
vector k used in L g,s is consistent with the guided weighting
vector kg in Lgc. We set them to 0.5 to ensure that the same
weight is applied between modalities.

To quantify the effect of adversarial training, we run an ab-
lation study with and without it. As shown in Fig. [T] without
adversarial training, Lgc decreases much faster than Lpgse,
indicating that cross-modal alignment is largely achieved by
the Guider while the encoder struggles to learn it on its own.
In contrast, adversarial training compels the encoder to narrow
this gap, effectively distilling the Guider’s alignment capability
into the encoder.

Pseudo-classification Arbitration. According to our observa-
tions in Sec. in addition to strengthening the learning of
mutual information between modalities, we should also make
good use of the unique information of different modalities.
Unfortunately, we cannot directly evaluate the complementary
performance of each modality during the unlabeled pre-
training stage, and thus cannot directly learn the unique
information of modalities. In this regard, our core idea is
to design an arbiter module which first pseudo-classifies the
feature vector obtained from each modality to obtain pseudo-
classification features and then calculates the entropy of
pseudo-classification features of different modalities to judge
the classification performance of each modality for a certain
sample. Finally, a relative attention score is given to the unique
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Figure 12: Design of Arbiter module.

information of each modality based on this performance, and
the score will eventually be included in the calculation of the
contrastive arbitration loss. Fig.|12|shows the working process
of the arbiter module.

Specifically, the arbiter module consists of two parts:
pseudo-classification feature extraction and entropy-based
attention allocation. For the previous part, we use the
"MLP-Norm-Softmax” network to obtain the probability
distribution of all possible classification results of the input
feature x;*, which we call the pseudo-classification feature
7,27 € [0,1]. In the attention allocation part, we calculate
the entropy of each pseudo-classification feature. Suppose
that the total number of classification results is C, then
" = [p1,p2, ..., pc], the entropy calculation formula for the
pseudo-classification feature Z]* of the mth modality of the
ith sample is:

C
H(E") = = pelog(pe)- (15)
c=1

The entropy of each modality represents the degree of con-
fusion of the pseudo-classification results of the modality.
The larger the entropy, the more ambiguous the classification
result, and vice versa. The smaller the entropy, the clearer
the classification result. Therefore, for any sample, we do not
impose too many constraints on those modalities with smaller
entropy. On the contrary, for those modalities with larger
entropy, we hope that they will learn from the modalities with
smaller entropy. Then for a certain modality m, its entropy-
based attention is:

v coplHE™)

Sy exp(H(i™))

Next, we construct the contrastive learning loss between the
two modalities of pseudo classification features based on

(16)

LBase:
la;"™ = CL(&[", &]"?). (17
Then, the arbitration contrastive loss L 4¢ is:
Lac = L(la,ka) - tq, (18)

where ka denotes the entropy-based attention vector, ¢, is a
temperature coefficient.
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Figure 13: Inter-modality pseudo-classification effect under the
influence of the arbiter.
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Figure 14: Multi-head attention based fine-tuning model.

In the actual pre-training stage, the arbiter module is
trained together with contrastive learning. However, we ob-
serve that at the early stage of contrastive learning, the pseudo-
classification feature extractor is not sufficiently trained, so
the arbiter module cannot effectively perform arbitration.
Therefore, in Eqn. [T8] we design ¢, with a very small initial
value that gradually increases with the number of training
rounds, to avoid the phenomenon of incorrect arbitration in the
early stage of arbiter module training. Finally, we simulate and
evaluate the effectiveness of the arbiter method by randomly
selecting six classes from the test set and using tSNE to
visualize the feature space. As shown in Fig. [[3] with the
arbiter module, our method produces clear pseudo clustering
in all modalities.

3) Pre-Train Loss: The total loss of RFusion in the pre-
training stage consists of the three parts mentioned above:
guided contrastive loss, guider module loss, and arbitration
contrastive loss. That is:

Liotat = Lac + Loy + Lac (19)

We consider that the three parts that make up the pre-training
stage are equally important, so the final comprehensive loss
only needs to simply add them together. The final experiment
also proves the effectiveness of our approach.

C. Fine-tuning to Different Missing-modality Conditions

In the fine-tuning stage, the objective is to leverage a small
amount of labeled data to enhance recognition performance.
However, in practical deployment, the number of available
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Figure 15: The impact of the number of multi-head attention
layers on classification performance.

RF modalities often differs from that in the pre-training
stage, resulting in missing-modality scenarios. To address this
challenge, we design two complementary fine-tuning strate-
gies—unimodal fine-tuning and multimodal fine-tuning—both
built upon a multi-head attention—based classification network
for effectively exploiting the available unimodal or multimodal
information.

Specifically, when only a single RF modality (e.g., WiFi,
RFID, or mmWave) is available, only the corresponding
modality-specific encoder branch is activated, and the ex-
tracted feature is directly fed into the classifier, correspond-
ing to unimodal fine-tuning. When multiple modalities are
available, their features are concatenated and jointly processed
by the classifier, while the encoder branch of any missing
modality is simply omitted. This design enables RFusion
to flexibly adapt to different modality availability without
architectural modification.

We next introduce the design of the unimodal and multi-
modal fine-tuning mechanisms.

1) Unimodal Fine-tuning Case: In unimodal fine-tuning,
we cannot combine information from multiple modalities,
for example, we cannot apply attention weights to different
modalities like Cosmo [27]. Thus, our idea is to apply multiple
different self-attentions to unimodal features to enhance the
use of information within the modality. As shown in Fig.[T4(a),
we introduce a multi-layer multi-head attention classification
network behind the unimodal feature encoder, and these
networks are connected internally through residuals.

2) Multi-modal Fine-tuning Case: When there are multiple
modalities in the scene, our approach is shown in Fig. [T4]b).
We first concatenate the features of multiple modalities to
use multi-head attention to learn the complementarity between
modalities. Secondly, we also add a learnable position en-
coding layer to enable the model to better learn the relevant
information between modalities.

Multi-head Attention Network. The multi-head attention is
written as:

Q(z)K" ()
vy

where the query layer, key layer, and the value layer are given
respectively by @, K, and V, and input z is the input feature
vector. Through this network, we can learn different types
of dependencies in the input sequence. Moreover, multi-head
attention enhances the model’s capability to capture complex

2z’ = Softmax ( ) V(z)+x (20)
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patterns by modeling the input through multiple independent
attention weights across different subspaces.

Finally, we simulate the relationship between the number
of multi-head attention layers and the fine-tuning effect. As
shown in Fig. the increase in the number of multi-head
attention layers does improve the fine-tuning effect, but the
accuracy improvement gradually becomes less obvious after
more than two layers. Therefore, weighing the two factors of
fine-tuning effect and model size, we finally chose a multi-
head attention layer with two layers of residual connections
in the fine-tuning stage.

IV. EXPERIMENTS
A. Datasets

We use two public multimodal datasets for human activity
recognition, XRF55 and MM-Fi, to evaluate the performance
of RFusion. Each dataset contains four multimodal scenarios,
covering common RF modalities such as WiFi, RFID, and
mmWave. We show the information summary of each scenario
in the dataset in Table.

XRF55 [28] dataset contains multimodal data of 55 human
activity categories collected from 39 individuals. The dataset
provides three RF modalities: WiFi, RFID, and mmWave.
Among them, the WiFi modal samples come from the CSI
of a total of 9 WiFi links under three WiFi receivers, and
each link sends an OFDM signal of 30 subcarriers. The
samples of the RFID modality come from the backscattered
phase information of 23 RFID tags collected by the RFID
reader. The samples of the mmWave modality are the distance-
Doppler heat map and distance-angle heat map obtained by
processing the FMCW signal, and the two are spliced along the
dimensional range. The XRF55 dataset contains four scenes
in total. For each scene, we divide 70% of the data into pre-
training datasets and the remaining data into testsets.

MM-Fi [29]] dataset consists of multimodal data of 27 human
activities collected from 40 individuals, including two RF
modalities: WiFi and mmWave. WiFi modal samples come
from the CSI of three WiFi channels after smoothing and
filtering, and each WiFi channel sends a signal composed
of 114 subcarriers. The mmWave modal samples are point
cloud data of position-Doppler velocity and signal strength, in
which the number of sampling points is increased by frame
aggregation. Notably, the provided mmWave point clouds have
already undergone static component suppression during dataset
preprocessing, and thus no additional operation is required.
The dataset contains four scenes. For each scene, we use
approximately 70% of the data for pre-training, with the
remaining data reserved for testing.

Table II: Dataset summary.

Dataset Scene Modality #Activities #Train Samples #Test Samples
Scenel 23100 9900
Scene2 ... 2310 990
XRF55 Scene3 WiFi, RFID, mmWave 55 2310 990
Scene4 2310 990
Scenel 3219 1284
. Scene2 - 2767 1168
MM-Fi Scene3 WiFi, mmWave 27 2926 1201
Scene4 2736 1147

B. Baseline Methods

To evaluate the performance of RFusion, we selected six ad-
vanced unsupervised multimodal contrastive learning methods
as baselines. To ensure a fair comparison under the RF few-
shot and missing-modality setting, all baseline methods follow
the same training protocol as RFusion: they are first pre-trained
in a multimodal manner using all available RF modalities,
and then fine-tuned under a few-shot setting where only the
modalities available in the target scenario are activated. In the
fine-tuning stage of all baselines, we used the Multimodal-
GRU classifier model consistent with Cosmo. The information
of all baselines is shown below.

Cosmo [27] is an advanced multimodal human activity recog-
nition method based on contrastive learning. It uses a quality-
oriented attention fine-tuning mechanism and a feature fusion
contrastive learning method, which can effectively learn the
consistency and complementarity between modalities. In the
experiment, except for canceling the attention guidance mech-
anism during single-modal fine-tuning, the other parts retain
the design of Cosmo unchanged.

CMC [37] is a contrastive learning method designed for
computer multi-view vision tasks, which directly compares
features from different modalities of unlabeled data to train
feature encoders. In the experiment, we keep the design of
CMC unchanged.

CC [44] is an advanced multimodal contrastive learning
method that introduces pseudo clustering in the pre-training
stage to obtain better clustering effects. In the experiment, we
retain the complete design of CC in the pre-training stage.
SimCLR [43] is an excellent contrastive learning method
for computer vision. It achieves good recognition results by
means of data enhancement and the introduction of nonlinear
transformation. In the experiment, we keep the contrastive
learning loss calculation method of SimCLR unchanged.
InfoNCE [42] is a basic unsupervised contrastive learning
method based on information theory. It trains model parame-
ters by dividing positive and negative samples and comparing
their similarities. We also compared the performance of the
InfoNCE contrastive learning method in the experiment.
Transformer is a general attention-based model whose repre-
sentation learning capability is also well suited for multimodal
fusion. It employs cross-attention to explicitly model inter-
modal interactions and capture complementary information
across modalities. In the experiment, modality-specific features
are first extracted and then fused through cross-attention layers
to obtain a joint representation for downstream recognition.

C. Experiment Setup

RFusion and other baselines are deployed on a Python-based
Pytorch platform running on a processor with an AMD Ryzen
7950x (5.7GHz), 64GB memory, and an Nvidia RTX4080
GPU. In both the pre-training and fine-tuning stages, the
learning rate is set to 0.001, the default batch size in the pre-
training stage is 32, and the default batch size in the fine-tuning
stage is set to 16. In Sec. [V-B]and Sec. [V-C| we select Scene
3 of the XRF55 dataset as the default experimental scene for
experiments. In all experiments, we independently conduct 5
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Table III: Performance on XRF55 dataset.

Dataset XRF55 (label rate: 24%)
Scene Scenel Scene2
Available modality ~ WiFi ~RFID mmWave Vlg‘FFI‘DJ’ n‘frfll\l,)a:e mWn;S\}a:e Al WiFi  RFID mmWave V‘é'FFI‘DJr n‘fn}?\,]v)a:e mv:g&aje All
Transformer 63.86 41.22 75.10 66.95 78.43 82.47 83.57 67.91 30.01 66.06 72.41 70.42 81.11 84.18
cc 6434 4219 76.19 66.98 79.64 8235  84.00 7284 3141 7173 73.66 7274 8222 83.64
CMC 64.14  39.46 76.05 67.75 79.48 82.80 83.62 69.29 31.21 66.76 73.87 69.08 80.84 82.19
Cosmo 5923 4177 73.57 61.46 76.79 7565 8401 7204 3158 66.36 59.22 69.97 8206  85.09
InfoNCE 64.21 33.87 72.25 67.93 78.05 82.66 83.49 68.38 28.88 67.97 72.74 73.38 82.21 83.05
SimCLR 63.89 4227  75.66 65.06 78.36 8244 8392 7084 3091 70.02 70.59 71.92 8135  83.79
Unimodal 63.2 15.52 79.15 - - - - 54.06 14.15 56.04 - - - -
RFusion 7418  50.84 83.69 75.68 86.05 89.79 92.31 83.44 51.51 81.57 87.37 85.72 91.48 93.79
+9.84 +8.57 +7.50 +7.75 +6.41 +7.13 +8.30 +10.60 +19.93 +9.84 +13.50 +12.34 +9.26 +8.70
Dataset XRF55 (label rate: 24%)
Scene Scene3 Scene4
Available modality ~ WiFi ~ RFID  mmWave Vg‘FFI‘DJr rﬁil\ga:e m“‘;’a‘,a:e Al WiFi RFID  mmWave Vz‘FFI‘DJr n}jil\ga:e va:\Fxlla:e All
Transformer 73.41 46.59 72.08 80.14 80.33 83.34 86.06 75.06 40.72 72.53 77.95 73.45 82.31 84.21
CC 73.77 51.35 73.25 81.78 79.09 82.47 85.64  77.35 38.52 72.74 75.81 71.10 84.11 84.57
CMC 74.48 50.51 68.85 81.55 73.77 83.09 84.56 7592 40.88 70.18 74.48 70.69 81.45 83.98
Cosmo 72.64 47.25 71.61 78.03 72.95 84.11 87.56 77.35 40.90 73.15 77.86 73.51 82.78 84.64
InfoNCE 73.56 45.49 71.41 80.12 77.56 84.02 84.37  74.89 41.13 73.15 76.94 74.81 83.09 83.68
SimCLR 74.34 48.69 72.84 81.84 78.84 84.13 85.20 78.76 42.11 73.84 78.17 70.49 84.37 84.56
Unimodal 55.83 33.02 60.52 - - - - 48.43 16.52 60.93 - - - -
RFusion 85.69 63.98 84.01 90.83 89.01 94.24 96.88  88.07 5222 84.29 88.51 84.95 92.88 93.76
+11.31  +12.63 +10.76 +8.99 +8.68 +10.11 +9.32  +9.31  +10.11 +10.45 +10.34 +10.14 +8.51 +9.12
Table IV: Performance on MM-Fi dataset.
Dataset MM-Fi (label rate: 24%)
Scene Scenel Scene2 Scene3 Scene4
Available modality WiFi mmWave All WiFi mmWave All WiFi  mmWave All WiFi mmWave All
Transformer 53.12 75.93 82.15 53.89 70.74 76.21 51.33 74.57 80.33 56.73 76.53 82.91
CC 53.35 77.96 78.29 56.67 70.46 7326 5641 74.50 75.39 56.07 77.11 80.01
CMC 53.98 75.78 78.32 56.25 70.20 74.56  57.33 73.83 76.27 48.94 75.88 79.22
Cosmo 54.06 78.14 82.21 55.39 71.88 7648  51.00 75.08 81.12 59.29 78.16 83.21
InfoNCE 59.84 74.37 75.68 49.05 70.63 71.15  45.50 71.75 72.68 53.16 74.47 76.68
SimCLR 51.32 74.84 76.32 50.94 69.01 7249  56.33 70.25 76.24 52.46 74.91 78.97
Unimodal 57.73 70.84 - 39.21 57.87 - 39.66 57.41 - 44.36 63.29 -
RFusion 76.33 86.57 92.81 67.48 79.82 8512  65.07 84.23 8933 7137 88.38 93.12
+16.49 +8.43 +10.60 +10.81 +7.94 +8.64 +7.74 +9.15 +8.21  +12.08 +10.22 +9.91
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Figure 16: Ablation experiment of RFusion.

mmWave

tests and record the TOP1 accuracy of each measurement result
to evaluate the performance of RFusion and other baselines.

V. EVALUATION
A. Overall Performance

Due to the scarcity of labeled data in practical human
activity recognition, we fine-tune all methods using only 24%
labeled samples. Table [[II] (XRF55) and Table [[V] (MM-
Fi) report results under different modality-availability set-
tings, including unimodal, partial-modality, and full-modality
(All) configurations, which explicitly evaluates performance
when one or more modalities are missing at deployment
time. Overall, baseline methods show noticeable performance
fluctuations across different available-modality settings, and

Label Ratio (%)

(a) Impact of labeled sample ratio.(b) Impact of unlabeled sample
ratio.

Unlabel Ratio (%)

Figure 17: Impact of sample labelling ratio on pre-training and
fine-tuning.

their accuracy drops more evidently in unimodal or partial-
modality cases. In contrast, RFusion consistently achieves the
best performance across all modality configurations on both
datasets. Across datasets and modality configurations, RFusion
achieves an average Top-1 accuracy of 82.41%, outperforming
InfoNCE, Cosmo, CMC, SimCLR, CC, and Transformer by
12.95%, 12.18%, 12.37%, 12.07%, 11.28%, and 11.75%,
respectively, and exceeding the supervised unimodal baseline
by 25.79%. These results confirm that RFusion is particularly
effective for missing-modality scenarios.
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Figure 19: Impact of fine-tuning data and model design on
RFusion performance.

B. Ablation Studies

The contribution of RFusion mainly consists of three parts:
the guider module, the arbiter module, and the multi-head
attention network. In order to evaluate the performance of
each part of RFusion, we conduct an ablation experiment
in the default scenario. We additionally set up a supervised
unimodal method, Ours (p0) equipped with a temporal multi-
head attention module with the same parameter size as the
Guider module, Ours (pl1) with only the guider module, and
Ours (p2) with both the guider module and the arbiter module
for comparison. As shown in Fig. [I6] each part of RFusion
has a certain contribution. In the pre-training stage, Ours
(pl) improves over Ours (p0) by an average of 12.66%, and
Ours (p2) further improves over Ours (pl) by 5.41%. After
adding the multi-head attention network, the fine-tuning effect
of RFusion improved by an average of 4.3%. These results
demonstrate the effectiveness of our proposed schemes.

C. Diverse Factors on RFusion

In this subsection, we investigate the factors affecting the
system performance.

1) Impact of Labeled Sample Ratio: We use different
numbers of labeled samples to evaluate the impact of the
scale of labeled samples on RFusion. We use the data used
in the pre-training stage as the source of labeled samples for
fine-tuning. Specifically, we take 12% to 48% of the data,
label it, and apply it to the fine-tuning stage. We conducted
experiments in the default scenario. As shown in Fig. [I7(a),
with the increase in the number of labeled samples, the
performance of all modalities under the RFusion method
shows a significant increase. When RFusion has 24% of the

labeled data, the average accuracy of the modality reached
72.17%, which is enough to prove that our method can
effectively reduce the need for a large amount of labeled data.

2) Impact of Unlabeled Sample Ratio: Since RFusion needs
to use a large amount of unsupervised data for pre-training,
the amount of unsupervised data in the pre-training stage is
crucial for the RFusion system. We use 20% to 100% of the
training data in the default scenario for pre-training, and then
use 24% of the pre-training data for fine-tuning testing in the
fine-tuning stage. As shown in Fig. [[7(b), the performance of
RFusion improves as the size of pre-training data increases,
which shows that RFusion can extract more useful information
from a large amount of pre-training data.

3) Impact of Different Training Parameters Settings: To
evaluate the robustness of the RFusion system to training
parameters, we showcase the performance of RFusion in
the default scenario with different contrast feature sizes,
different numbers of pseudo-classifications, and different pre-
training batch size parameters. As shown in Fig. [I8]a) and
Fig. [I8|b), the RFusion system is robust to both contrast
feature size and training batch parameter size during the pre-
training stage. However, in Fig. [I§]c), it is more sensitive to
the pseudo-classification number parameter. This is because
when the number of pseudo-classifications does not match
the actual number of classes in the data set, it will mislead
RFusion’s arbitration performance in contrastive learning.
Notably, the pseudo-classification number only controls the
grouping capacity of the arbitration module and does not
rely on any ground-truth labels, so the pre-training objective
remains unsupervised. In practice, this parameter can be set
conservatively or tuned during the few-shot fine-tuning stage
without affecting the unsupervised pre-training formulation.

4) Impact of Labeled Sample Source: During fine-tuning,
RFusion relies on a small amount of labeled data. In practice,
these labels may come from different sources, e.g., “cloud
users” (subjects seen during training) or “local users” (sub-
jects encountered at deployment). To study the impact of
label source, we compare its performance under these two
sources with varying amounts of fine-tuning data. As shown
in Fig. [[9)(a), RFusion yields better performance using local
data for fine-tuning. For example, with only 4 labeled samples
per class, RFusion reaches an average recognition accuracy of
80.12%.

5) Impact of Fine-tuning Model: To assess the impact
of the fine-tuning classifier, we replace RFusion’s multi-



JOURNAL OF KX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021

o
o

0
[ours (ai] EEwiFi CZIRFID Bl mmwave

0
[ours (ain | BRI wiFi CIRFID B mmwave |
|Unimodal] (CJwiFi (CJRFID ] mmwave

|unimodal| CwiFi CJRFID ] mmwave |

~
3l
~
3]

N
3]

Table V: Computational and memory overhead of RFusion
under different modality settings.

g é Available modality Params Occupy memory CPU Inference Time GPU Inference Time
g o g 5 WiFi 987M 173 MB 459 ms 1,50 ms
§ é RFID 837M 167 MB 4.07 ms 1.72 ms
2 é;) 25 mmWave 1138 M 307 MB 6.30 ms 1.64 ms
WiFi+RFID 11.85 M 183 MB 6.61 ms 2.08 ms
0 0 Eﬁ Fﬁ Fﬂ RFID+mmWave  13.56 M 317 MB 8.11 ms 2.19 ms
1 2 4 1 2 4 WiFi+mmWave 15.62M 324 MB 9.46 ms 1.94 ms
Number of Shots Number of Shots All 1827 M 332 MB 12.41 ms 250 ms

(a) Performance of Cross-person. (b) Performance of Cross-scene.

Figure 20: Performance of cross different domains.

head attention classifier with several commonly used alter-
natives, including RNN, GRU, LSTM, and Attn-GRU (as in
Cosmo [27]]), while keeping all other settings unchanged. As
shown in Fig. [[9[b), the multi-head attention classifier yields
the best results and improves the average single-modality
accuracy by 4.1% over the alternatives, indicating that it is
more effective for unimodal deployment.

6) Performance of Cross different domains: We now eval-
uate the performance of RFusion when crossing different
domains.

Cross-person. To evaluate cross-person performance, we
pre-trained the model using all samples from the first 29 sub-
jects in Scene 1 of the XRF55 dataset and subsequently tested
it on all samples from the remaining one subject who was not
seen during pre-training. During the test, we used 1/2/4 test
samples of each action from the remaining 1 subject to fine-
tune the pre-trained model, with the remaining samples serving
as the final test set. We compared the performance of using our
method and not using our method(i.e., a supervised unimodal
baseline). As shown in Fig. 20{a), under the 4-shot fine-tuning
stage, the average recognition accuracies of 73.67% (WiFi),
42.90% (RFID), and 77.82% (mmWave) for the 3 modals,
respectively. Compared with the overall performance without
cross-person (Table [ITI), the accuracy drop is at most 7.94%,
whereas without our method, the baseline suffers a much larger
drop of up to 31.57%. This indicates that RFusion adapts
effectively to cross-person scenarios.

Cross-scene. To further evaluate the performance of RFu-
sion in both cross-environment and cross-person tasks, we
used all samples from the 30 subjects in Scene 1 for pre-
training and all samples from the 3 subjects in Scene 2
as the test set. The fine-tuning stage was similar to that
described in the Cross-person evaluation, where 1/2/4 test
samples of each action from each subject were used for fine-
tuning. As shown in Fig. 20(b), under the 4-shot fine-tuning
stage, the average recognition accuracies were 76.25% (WiFi),
16.33% (RFID), and 73.82% (mmWave). The RFID modality
performs the worst, consistent with the recent work [28]]. This
is mainly due to the intrinsic limitations of passive backscatter
sensing: RFID measurements are low-dimensional with limited
spatial-temporal resolution, and are highly sensitive to tag
orientation, antenna coupling, and multipath distortion. Even
so, our approach still delivers a maximum average-accuracy
improvement of 21.71% over not using our method, demon-
strating that RFusion remains effective in more complex cross-
scene settings.

D. Efficiency and Deployment Analysis

In this experiment, we evaluate the deployment efficiency
of RFusion under different modality configurations by report-
ing its parameter count, memory footprint, and per-sample
inference latency on CPU and GPU. The results are shown in
Table[V. Overall, RFusion achieves millisecond-level inference
across all settings, with 4.07 to 12.41 ms on CPU and 1.50 to
2.50 ms on GPU. The model complexity grows approximately
linearly with the number of available modalities, while the
quadratic cost introduced by attention-based fusion remains
negligible in practice due to the short latent sequence length.
These results indicate that RFusion maintains a favorable
balance between recognition performance and computational
efficiency, supporting practical real-time deployment.

VI. RELATED WORKS

In this section, we introduce the prior works that are closely
related to our RFusion.

A. RF-based Human Activity Recognition

Owing to their contact-free nature and lack of privacy
concerns, various radio frequency (RF) sensing technologies
have been widely adopted for human activity recognition. They
include WiFi [30]-[34], RFID [45]-[47], and mmWave [48]]-
[51]. For example, WiLDAR [52] designs a lightweight HAR
system that can extract information from Wi-Fi CSI without
additional complex operations. TSCNN [53] leverages the
time-space convolutional network to improve the recognition
accuracy of RFID HAR and realize the generation of new data
sets. Wang et al. [54] propose a millimeter-wave point cloud
data enhancement method to improve the generalization effect
of the model in different scenarios. Unlike previous works
that focus solely on a single RF modality, this paper intro-
duces a multimodal-assisted sensing paradigm. By leveraging
unlabeled multimodal RF data during pre-training, we enhance
fine-tuning performance under modal-scarce scenarios. This
enables RFusion to achieve multimodal-level performance
while requiring minimal effort during inference, such as using
only a single RF modality.

B. Multimodal-based Human Activity Recognition

Compared with single-modality approaches which tend to
have poor robustness, multimodality has been widely studied
in perception tasks [21]-[24] due to its advantages through
information fusion. DeepSense [55] introduces the idea of
interactive learning between sensors to enhance multimodal
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training effectiveness. AttnSense [56] proposes an attention-
based multimodal fusion mechanism, demonstrating improved
performance and interpretability. XRF55 [28] collaboratively
combines three RF modalities to enhance sensing performance.
Although these multimodal approaches have achieved promis-
ing results, acquiring labeled samples remains challenging in
practice. Due to the high cost of manual labeling and potential
privacy concerns, it is often infeasible to obtain large quantities
of multimodal labeled data for training.

To address this issue, efforts have been made to leveraging
unlabeled data for human activity recognition [57]-[62]. For
example, Cosmo [27] is a two-stage contrastive fusion learning
framework, the training of its encoders mostly relies on
unlabeled samples and requires only a small number of
multimodal labeled data during fine-tuning. MaskFi [26] is
a Transformer-based multimodal training method that masks
parts of the input during pre-training and utilizes unlabeled
WiFi and visual data for HAR. Autoencoder model [63],
which is trained on unlabeled samples, has also been explored.
It was fine-tuned with limited labeled data to approximate
supervised learning performance. While these works reduce
the model dependencies on labeled datasets, they are not
directly applicable to RF-based HAR tasks. In practice, it
is relatively easy to collect large-scale unlabeled multimodal
RF data. However, Ma et al.’s autoencoder does not fully
exploit the rich multimodal information during pre-training.
Moreover, due to the diverse deployment scenarios of RF
technologies, it is common that only a subset of RF modalities
is available during inference. Cosmo, for example, relies on
relative attention across multiple modalities during fine-tuning
(e.g., accelerometers and IMUs in wearable devices), and
MaskFi similarly requires the simultaneous availability of
multiple modalities. These approaches assume the full set of
modalities is accessible during fine-tuning and do not address
scenarios with missing RF modalities. In contrast, RFusion is
designed to address the challenges of missing RF modalities
while still maintaining the benefits of full-modal performance.

VII. DISCUSSION

In this section, we discuss several limitations and untapped
opportunities with RFusion.
Unseen Gesture Recognition. In practical scenarios, unde-
fined or previously unseen gestures frequently occur. However,
the current version of RFusion performs well only on gestures
it has been trained on, and struggles to effectively recognize
unseen gestures. In future work, we can explore how to
adapt to new gestures based on the knowledge learned from
previously performed gestures.
Multi-user Scenarios. Multi-user sensing remains a well-
known challenge in RF sensing, as reflection signals from
multiple targets can become mixed at the receiver, causing
mutual interference. The current version of RFusion focuses
primarily on single-target scenarios. For multi-user cases, we
believe that recent advances in multi-dimensional signal pro-
cessing [64] offer promising opportunities to enable effective
multi-user sensing. We leave it as our future work.
Applying to Other Fields. Although we focus on multimodal
fusion across RF technologies (WiFi, RFID, and mmWave)

for HAR, the proposed framework can be extended to other
sensing modalities (e.g., accelerometers and gyroscopes) and
applied to broader domains such as healthcare and industrial
monitoring. By transferring knowledge from multimodal data,
it can help low-cost modalities approach multimodal perfor-
mance, reducing deployment cost.

Generalizing to unseen modalities. The current version of
RFusion does not automatically generalize to completely new
sensing modalities that are unseen during pre-training. Sup-
porting a new modality would require adding a corresponding
encoder and adapting it to the shared feature space.
Integrating Generative Models. Diffusion-based generative
models provide a complementary direction to RFusion: they
can be used to augment unlabeled RF data and even synthesize
missing modalities for modality completion. RFusion, in turn,
focuses on learning robust multi-modal representations. Thus,
a promising future work is to combine the two: applying
RFusion on a joint corpus of real and generated RF signals,
and treating generated modalities as additional views to further
enhance cross-modal alignment and robustness under missing-
modality and few-shot conditions.

VIII. CONCLUSION

In this paper, we propose RFusion, a multimodal-assisted
sensing paradigm that leverages unlabeled RF multimodal
data in the pre-training stage to enhance the fine-tuning
performance under modal scarcity scenarios. RFusion fully
learns the mutual and unique information in multimodal data
in the pre-training phase through the guider module and the
arbiter module, and uses multi-head attention to improve the
fine-tuning effect in missing modality scenarios with a small
number of labeled samples. Our evaluation shows that RFusion
has a significant improvement over the other latest baselines.
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