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Tactile perception enables systems to sense and interpret physical properties such as shape, material, pressure, and texture.
It is a key capability for emerging applications like robotic surgery and assistive robotics. Existing solutions to tactile
perception typically rely on computation-intensive deep neural networks, which require high-performance computing
resources unavailable on embedded and battery-powered devices. Spiking neural networks (SNNs) offer a promising, energy-
efficient alternative, but their practical adoption remains limited due to the lack of efficient and deployable neuromorphic
solutions. We present SPIKETOUCH, a software framework designed to reduce the computational overhead of SNNs for tactile
perception on neuromorphic hardware. SPIkKEToucH offers three key optimizations tailed to SNN-based tactile perception:
(1) a spike encoding scheme that balances precision and computational cost; (2) a systematic method for extracting multi-
dimensional tactile features; and (3) a training strategy that minimizes quantization errors to improve performance and reduce
memory usage. We evaluate SPIKEToUCH on the Tianjic neuromorphic chip using representative tactile perception workloads.
Our results show that SpikEToucH achieves high recognition accuracy for 30 objects and their material stiffness , with an
average accuracy of 92.92% and 92.35%, respectively. It is also highly energy and computationally efficient, operating at just 1
Watt of power - significantly lower than the hundreds or thousands of Watts typically required by a GPU - and delivering a
response in under 20 ms - well below the average human reflex time of over 100 ms.

CCS Concepts: « Human-centered computing — Ubiquitous and mobile computing.

“Both authors contributed equally to this research.
T Corresponding author.

Authors’ Contact Information: Xuerong Zhao, Northwest University, China, xrzhao@stumail. nwu.edu.cn; Xuan Wang, Northwest University,
Shaanxi Key Laboratory of Passive Internet of Things and Neural Computing, China, xwang@nwu.edu.cn; Jian Wu, Northwest University,
Internet of Things Research Center, Northwest University, China, 2022117131@stumail.nwu.edu.cn; Chao Feng, Northwest University, Xi’an
Advanced Battery-Free Sensing and Computing Technology International Science and Technology Cooperation Base, China, chaofeng@
nwu.edu.cn; Dingyi Fang, Northwest University, Shaanxi International Joint Research Centre for the Battery-Free Internet of Things, China,
dyf@nwu.edu.cn; Xiaojiang Chen, Northwest University, Shaanxi Key Laboratory of Passive Internet of Things and Neural Computing,
China, xjchen@nwu.edu.cn; Zheng Wang, Leeds University, China, z.wang5@leeds.ac.uk.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page.
Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy
otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from
permissions@acm.org.

© 2025 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM 2474-9567/2025/12-ART242

https://doi.org/10.1145/3770658

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 9, No. 4, Article 242. Publication date: December 2025.


https://orcid.org/0009-0005-4305-0977
https://orcid.org/0000-0002-6271-0388
https://orcid.org/0000-0002-4313-9809
https://orcid.org/0000-0002-7322-2320
https://orcid.org/0000-0002-5816-6922
https://orcid.org/0000-0002-1180-6806
https://orcid.org/0000-0001-6157-0662
https://orcid.org/0009-0005-4305-0977
https://orcid.org/0000-0002-6271-0388
https://orcid.org/0000-0002-4313-9809
https://orcid.org/0000-0002-7322-2320
https://orcid.org/0000-0002-5816-6922
https://orcid.org/0000-0002-1180-6806
https://orcid.org/0000-0001-6157-0662
https://doi.org/10.1145/3770658

242:2 « Zhaoet al.

Additional Key Words and Phrases: Tactile Perception, Spike Neural Networks, Low-power Neuromorphic Chip

ACM Reference Format:

Xuerong Zhao, Xuan Wang, Jian Wu, Chao Feng, Dingyi Fang, Xiaojiang Chen, and Zheng Wang. 2025. SPIKETOUCH:
Optimizing Spike Neural Networks for Tactile Perception. Proc. ACM Interact. Mob. Wearable Ubiquitous Technol. 9, 4,
Article 242 (December 2025), 24 pages. https://doi.org/10.1145/3770658

1 Introduction

Tactile perception is the ability to sense and understand touch-related properties like texture, pressure, and
movement [27]. It enables machines to detect shape, stiffness, or slipping during contact, helping them handle
objects with care [29, 44], similar to how humans use their hands. Such a capability is useful in areas like surgery
or assistive robots and is essential to modern robotics systems. For example, Tesla’s Optimus Gen 2 robot hand
uses 11 high-resolution tactile sensors [1] to handle fragile items like eggs, while the Da Vinci surgical robot uses
force sensors to estimate tissue stiffness and avoid damaging it during surgery [22].

Today’s tactile perception systems typically rely on deep neural networks (DNNs) to process tactile data [18,
28, 32, 42], but these models are too resource-intensive for embedded and battery-powered devices with limited
computing power. Running DNNs on such systems can cause delays and reduce control accuracy, which is risky in
tasks like handling fragile objects. Spiking neural networks (SNNs) offer a promising, energy-efficient alternative
to traditional neural networks, inspired by how the brain processes information using short bursts of activity, or
"spikes" [30, 38, 53]. As depicted in Fig. 1, an SNN-based tactile perception system uses neuromorphic sensors
that mimic how mammals sense touch by producing spikes in response to physical contact. These spikes are then
processed by spiking neurons. Because SNNs are designed to work with sparse, event-driven data and use little
power, they are well-suited for real-time tactile sensing in devices with limited resources, such as robotic hands
and wearable systems.

While promising, most existing SNN-based tactile perception solutions are still implemented and evaluated on
conventional CPUs or GPUs [19, 37]. These approaches often assume access to powerful computing platforms -
an assumption that does not hold for resource-constrained devices, where computational resources and capacity
are limited. Moreover, since conventional computing architectures are not designed to exploit the spike sparsity of
SNNGs, prior work suffers from poor energy efficiency, which undermines the key advantages of using SNNs [52, 54].
Without concrete, quantitative evidence of improved efficiency on dedicated neuromorphic hardware, it remains
difficult to justify the adoption of SNN-based tactile perception in practical applications.

This paper introduces SPIKETOUCH, a software framework for optimizing SNN-based tactile perception work-
loads. SpikETOUCH integrates a set of strategies to optimize SNNs for tactile perception tasks during both model
design and deployment. It addresses key limitations in existing work by tackling three aspects of energy and
performance optimization for tactile perception workloads: (1) efficient spike encoding, (2) extraction of multi-
dimensional tactile features, and (3) mitigation of quantization errors when trading SNN model weights for
improved performance and reduced memory footprint. Furthermore, our work also contributes to the adoption
of SNN-based tactile perception and further research by providing empirical evidence of tangible performance
improvements on SNN-enabled neuromorphic hardware. In the remainder of this section, we describe each
optimization strategy in detail, highlighting the challenges each optimization addresses and its contributions
toward optimizing the performance and energy efficiency of SNN-based tactile perception applications.

Firstly, accurately encoding continuous tactile signals into spike-based representations is challenging, as it
requires balancing computational efficiency against signal fidelity. High-accuracy perception requires enough
spikes to capture subtle signal variations, but this increases computational overhead. Reducing the spike count
improves computational efficiency but risks losing important details. Existing methods - based on fixed thresh-
olds [40] or uniform sampling [4] are inadequate. They either generate too many spikes, increasing energy use, or
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Fig. 1. Biological tactile perception systems (a) and SNN-based solutions runing on brain-like neuromorphic hardware (b)

too few, degrading precision. We address this with SparsePulse, a reverse-generation encoding scheme that applies
adaptive thresholding to segment pressure signals and encode them using spike counts during active periods. In
contrast to conventional approaches that the number of generated spikes proportionally to pressure—leading to
dense spiking during stable holding phase due to sustained high pressure—our key insight is to generate dense
spikes in high-entropy regions characterized by rapid changes but small pressure, while creating sparse spikes in
low-entropy, stable regions with large pressure. This strategy improves efficiency while preserving perceptual
accuracy.

Secondly, effective tactile perception requires extracting key features from complex, multi-dimensional sig-
nals [55]. Tactile data encodes information across time and space [34]. Instantaneous, temporal pressure values
reveal properties like shape and material - whether soft or hard, smooth or textured - while spatial pressure
patterns indicate contact geometry. For example, cylindrical objects like pens or bottles often yield symmetrical
pressure distributions [25], whereas angular objects such as cubes or wrenches create localized, uneven zones [33].
Material stiffness also adds complexity: a rubber ball and a metal ball of the same shape generate different pressure
profiles due to differences in deformation. To handle this, we propose MT-SNN, a lightweight, multi-task SNN
architecture designed to jointly recognize object categories and infer material stiffness from spatiotemporal
tactile data. Our strategy reduces the need for separate specialized models, thereby simplifying model complexity
and improving inference latency using a single optimized model by avoiding model switching.

Thirdly, quantization is widely used to reduce the computational and memory overhead of trained models during
deployment [8, 41, 58]. By representing model weights with low-bit values, it lowers resource requirements but
also introduces precision loss - an issue especially problematic for SNNs, which rely on precise spike timing [23].
For SNNs, even small quantization errors can disrupt membrane potential dynamics, causing neurons to misfire
and degrading overall performance [26]. For example, a neuron that should fire after reaching a specific input
threshold might fire too early if quantized weights distort the input sum. To mitigate this, we propose SpikeQAT,
a quantization-aware training framework that improves inference accuracy on SNN-enabled hardware. SpikeQAT
integrates quantization and dequantization steps directly into the training phase, allowing the network to learn
to compensate for quantization-induced errors via backpropagation. This is achieved by integrating quantization
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and dequantization modules into the synaptic weight paths and membrane potential updates of Leaky Integrate-
and-Fire (LIF) layers - the key component of SNNs, enhancing robustness and preserving performance after
deployment.

We have developed a working prototype of SpikEToucH and evaluated its optimization methods on a pressure
sensing array and the Tianjic brain-like neuromorphic chip on representative tactile perception tasks. Our
evaluation shows that SPIKEToUCH can effectively recognize 30 objects and their material stiffness with an
average accuracy of 92.92% and 92.35%, while consuming only 1 W of power with a response time of under 20
ms'. In comparison with conventional neural networks running on a NVIDIA 2080Ti GPU, SpikeToucH reduces
average power consumption by over 96% and inference time by 80%.

This paper makes the following contributions:

o A new spike encoding scheme that balances precision and computational overhead, leveraging the charac-
teristics of tactile data for energy-efficient optimization (Section 4.3);

o A systematic method for extracting multi-dimensional tactile features (Section 4.4);

e A training approach that reduces quantization errors when optimizing spiking neural networks (SNNs) for
improved performance and reduced memory usage (Section 4.5);

e Empirical evidence demonstrating the benefits of optimized SNNs for tactile perception on neuromorphic
hardware (Section 6).

2 Related Work

In this section, we will discuss the related studies in tactile perception and SNN.

Physics-based Models. Physics-based haptic perception systems rely on high-precision sensor signals and
well-defined physical models of tactile sensation to decode haptic signals [10, 50]. For instance, J. Dargahi and S.
Najarian [10] developed a neural encoding model by simulating the spatiotemporal responses of mechanoreceptors
in the skin, employing frequency domain decomposition to differentiate haptic modalities. Chelsea Tymms et
al. [50]employed finite element analysis (FEM) to compute the skin strain field under rigid contact. However, these
methods typically rely on simplifying assumptions, making it difficult to accurately represent complex, real-world
haptic interactions. This leads to poor generalization when applied to new objects or environments. Additionally,
physics-based modeling is inflexible when dealing with dynamic tasks, and its real-time performance is often
inadequate for fast-response requirements.

Machine Learning-based Systems. Machine learning-based tactile systems [5, 7, 36, 45], such as those devel-
oped by Barreiros et al. [5], combine Support Vector Machines (SVM) with Principal Component Analysis (PCA)
to reduce the 548-channel tactile data to 8 dimensions, enabling multitask force and contact point localization.
Sundaram et al. [45] utilized ResNet-18 to classify 26 types of objects, achieving an accuracy rate of 98%. Chen et
al. [7] employed a Multihead-Attention Residual Network (Multihead-Attention ResNet) combined with a Bidirec-
tional Gated Recurrent Unit (Bi-GRU) to analyze passive vibrotactile signals collected by a smartwatch, achieving
classification of 20 categories of daily objects with an average accuracy of 86.4%. However, complex models used
in haptic perception, such as CNN-LSTM or Transformer networks, often suffer from high computational latency
due to their large parameter sizes and complex architectures. This makes them unsuitable for millisecond-level
response applications, such as tissue palpation in surgical robots, force control in prosthetics, or fragile object
manipulation in industrial robotics. Moreover, these models face significant compatibility issues with low-power
hardware, such as embedded systems.

Spiking Neural Networks (SNN) based Methods. SNN, inspired by brain-like computing principles, are
well-suited for processing spatiotemporal tactile signals due to their biologically plausible spike-based coding

For comparison, the human body’s reflex response typically takes 150-200 ms - nearly an order of magnitude slower than 20 ms - suggesting
SpikeToucH’s potential for supporting real-time applications.
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mechanisms [6, 9, 16, 17, 24, 47, 57]. This enables low-power operation at the milliwatt level while maintaining
rapid response times and high-precision recognition, making them suitable for applications such as medical
robots and intelligent prosthetics. For example, the pioneering works [9, 24] primarily focus on the design of
human-like tactile sensors that generate neuron-like signal patterns (i.e., spikes), which are then fed into an
artificial neural network (ANN) for recognition. [57] integrates pressure sensors with NbOx-based memristors to
fuse multimodal analog information into a single spike sequence, enabling simultaneous pressure and temperature
sensing through SNN model. Taunyazov et al. [47] encoded BioTac signals into spike sequences using Izhikevich
neurons, achieving a texture classification accuracy of 94.6% by using SNN. While, the work [21] explores more
advanced learning rules for spiking neural networks (SNNs), such as spike-timing-dependent plasticity (STDP), to
enable unsupervised feature extraction. Although SNN-based methods show great potential for tactile perception,
many are evaluated only in simulated environments rather than on real neuromorphic hardware. The energy
efficiency and temporal advantages of SNNs remain underutilized, as conventional computing platforms—such as
ARM-based GPUs—are not optimized for the event-driven and sparse computation that SNNs rely on.

Unlike the aforementioned works, our work presents a complete, low-cost, and efficient end-to-end neuromor-
phic tactile sensing system deployed on real SNN hardware. We introduce a spike encoding scheme that balances
precision and efficiency, and a training strategy that mitigates quantization errors to improve performance
and reduce memory usage. SPIKEToucH further supports dual-task tactile perception, jointly identifying object
category and physical properties (e.g., hardness) from a single static grasp.

3 Preliminary

This section introduces the bankgrounds of Spiking Neural Networks (SNNs) and the basics of neuromorphic
hardware.

3.1 Spiking Neural Networks

SNNs mimic the spike-based communication patterns of biological nervous systems [12, 14, 56]. They typically
consist of spiking neurons, connections known as synapses, and dynamic rules governing spike transmission.
Unlike traditional neural networks, SNNs process and encode information through discrete sequences of spikes
(action potentials), considering both timing and spatial positioning.

A key component of SNNs is the Leaky Integrate-and-Fire (LIF) neuron [2], as illustrated in Fig. 2. When a
neuron receives input spikes, its internal membrane potential increases according to a defined integration process.
At the same time, a continuous leakage effect gradually decreases the membrane potential at a constant rate,
preventing it from growing without limits and maintaining stable functionality. When the membrane potential
reaches a certain threshold, the neuron fires (emits a spike) and then resets its potential.

Compared to conventional artificial neural networks (ANNs) [31], SNNs provide several important benefits.
First, their event-driven spike communication significantly lowers energy use, making SNNs particularly suitable
for energy-efficient applications like edge computing. Second, their natural use of spike timing allows them to
process temporal information effectively, avoiding the need for the complicated recurrent structures often used
in ANNSs. Third, the dynamic nature of SNNs and their sparse spike signals enhance their robustness against
noise. Given these advantages, our work utilizes SNNs as the primary learning framework for tactile perception,
aiming to achieve greater energy efficiency and reduced computational demands on embedded systems.

3.2 Neuromorphic Computing Platforms

Most existing approaches for executing SNNs rely on conventional CPU or GPU hardware. However, these
platforms are not designed to take full advantage of key SNN characteristics, such as sparsity, event-driven
computation, and time-based information encoding. To address these limitations, brain-inspired computing
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Fig. 2. Workflow of a LIF neuron.

platforms, such as Intel Loihi [11], IBM TrueNorth [35], and Tsinghua Tianjic [39], have been developed. These
neuromorphic platforms mimic the structure and function of biological neural systems. By integrating computation
and memory, they depart from the traditional von Neumann architecture and offer advantages such as high
parallelism, low energy consumption, and distributed processing.

In this work, we evaluate our approach on the Tianjic neuromorphic chip, which supports diverse neural
models, parallel task execution, dynamic learning capabilities, and flexible power control. These features make it
particularly well-suited for energy-efficient and real-time tactile sensing applications. However, our software-
based optimizations are equally applicable to other neuromorphic hardware architectures.

Tianjic Architecture: The Tianjic multi-core processor is designed to support the computational requirements
of ANNs and SNNs [39]. Each functional core comprises five key modules: the Axon module caches spikes
and activation values, the Synaptic module stores synaptic weights, the Dendritic module serves as the main
computational unit, the Soma module performs nonlinear transformations, and the Routing module manages data
transmission. To achieve low power consumption and reduced latency, the Tianjic chip adopts a modular hardware
design with several key optimizations. These include near-memory computing to minimize data movement and
energy use, input data sharing to reduce memory access frequency, row-based computation skipping to avoid
unnecessary operations on zero-value inputs, column grouping enablement to power down inactive column
groups, and inter-group pipeline parallelism to enhance processing efficiency. Together, these architectural
innovations enable the Tianjic chip to deliver high computational throughput with energy-efficient and scalable
support for a broad range of Al workloads.

Network Mapping: To run a spiking or neural network on the underlying hardware, high-level neural operations
- such as convolution and activation - must first be translated into low-level hardware primitives, like the Axon
and ReLU primitives on the Tianjic chip. This translation process involves generating configuration files through
simulation and deploying them onto the chip. The mapping process is typically carried out in two stages. First, in
the logical mapping stage, the neural network is broken down and assigned across functional cores to ensure
functional correctness and task completion, without yet considering hardware limitations. Second, in the physical
mapping stage, these logical cores are placed onto specific physical locations within the chip, with the goal of
minimizing communication overhead by accounting for the chip’s fixed two-dimensional core array. Efficient
mapping is essential for making the most of available hardware resources and achieving high performance when
running SNNs on the Tianjic platform.

4 System Design
4.1 Overview of SpikeToucH

SpikeTOUCH is a bio-inspired, low-power tactile sensing architecture that encodes continuous pressure signals
into discrete spike sequences on a neuromorphic chip. By leveraging the event-driven and sparse computation
characteristics of SNNs, it eliminates redundant processing commonly found in traditional approaches, thereby
achieving both low power consumption and low latency. As illustrated in Fig. 3, SpikeToucH comprises four

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 9, No. 4, Article 242. Publication date: December 2025.



SeikeToucH: Optimizing Spike Neural Networks for Tactile Perception « 242:7

o SensorK g N\ Seikes | | g @ -l °
Sensork ,~———\ /\ ] ‘ g @ e sphere
______ ': ‘Shape : :
Q .. . f e O & -
f ensor 2
Q. 004 @ ey LT/ \ pr— 11111 I e < L \
19 O sensor2 [N g‘ ) A g :””
— T ag, SENS0L 5 . . 1 5
o0 Cj_ 4 : Material : :
oo sensert, e N\ L, F & o @ 11« wedia Sort

el Pressure Values SparsePulse MT-SNN Training on GPU  Inference on Brain-inspired Chip

Q

Fig. 3. Overview of the main SpikeToucH components for tactile perception.

primary modules: a tactile data acquisition module, a spike encoding module, a multi-task recognition module,
and a model deployment module. The design and functionality of each module are described in detail below.

Tactile Data Acquisition and Processing Module (Sec. 4.2). To enable precise measurement of the mechanical
characteristics during grasping, a flexible glove equipped with 25 pressure sensors is used. These sensors are
strategically distributed across key contact regions—fingertips, finger pads, and palm—to ensure comprehensive
coverage of pressure variations during hand-object interactions. The sensor array accurately captures pressure
signals reflecting multiple dimensions such as object shape, stiffness, and gripping force, and transmits the
ADC-converted analogue signals in real time to the processing unit.

Spike Encoding Module (Sec. 4.3). This module converts continuously varying pressure signals into discrete
spike sequences for subsequent SNN-based processing. To achieve this, a reverse-generation encoding scheme,
SparsePulse, is proposed, which employs adaptive thresholding to segment the pressure signals and encodes them
using spike counts during active periods. By generating dense spikes in high-entropy regions—characterized by
rapid changes but low pressure—and sparse spikes in low-entropy, stable regions with high pressure, the scheme
enhances encoding efficiency while reducing power consumption.

Recognition Module (Sec. 4.4 and Sec. 4.5). A collaborative multi-task SNN architecture is designed to
efficiently extract spatiotemporal features from spike sequences using the LIF model, enabling simultaneous
recognition of object types and their material stiffness. While training is conducted on a GPU, deployment targets
neuromorphic hardware with constrained computational and memory resources. To bridge the performance
gap caused by quantization, we introduce a quantization-aware training framework, SpikeQAT, which embeds
quantization and dequantization operations directly into the training process. This approach enables the network
to learn to compensate for quantization-induced errors through backpropagation, thereby improving robustness
and preserving performance.

Model Deployment and Inference Module. The trained model is deployed into the neuromorphic chip for
inference through software-based mapping. A spatiotemporal spike matrix, generated by encoding the pressure
values from a set of tactile sensors, is fed into the trained MT-SNN model. After weighted computations, the
output neuron with the highest spike count determines the predicted class label.

4.2 Data Preprocessing

In this section, we first present a signal calibration scheme to mitigate signal distortion caused by sensor bending
during data acquisition. Next, we introduce a data augmentation strategy designed to generate a large volume of
diverse samples, thereby enhancing data diversity and improving model generalization.

4.2.1 Signal Calibration. During data collection, we observe that minor hand movements can cause bending of
the glove’s sensors, resulting in pressure artifacts. As illustrated in Fig. 4(a), sensors located at frequently bent
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positions (e.g., sensors 2, 3, 6, etc.) show significant distortion, while others remain largely unaffected. To mitigate
this issue, we build a bending error map by gradually bending the glove and recording outputs across angles.
A sliding window of six data points is used to compute a composite score based on a weighted combination of
mean and variance similarity, enabling the identification of regions dominated by bending-induced errors.

Score = w; - Mean + w, - Var (1)

where w; = 0.7 and w; = 0.3. If the similarity exceeds 80%, the signal is corrected by subtracting the corresponding
mapped error value derived from the bending error map. If the measured pressure exceeds 1.5 times the maximum
recorded bending-induced value, it is considered real contact and corrected accordingly.

Fig. 4(b) and Fig. 4(c) illustrate the effectiveness of the denoising algorithm for a single tactile sensor. The
raw pressure curve (Fig. 4(b)) exhibits significant fluctuations caused by glove deformation, especially during
hand movements, where error signals are entangled with true pressure signals. In contrast, the denoised curve
(Fig. 4(c)), obtained through a sliding-window matching strategy combined with a curvature-error mapping
table, appears considerably smoother. The correction effectively suppresses error components and highlights the
underlying true pressure signals.

4.2.2 Data Augmentation. The collected pressure data are limited in quantity and captured under relatively
constrained scenarios, making it difficult to comprehensively reflect the glove’s behavior across diverse usage
conditions. In particular, sensor signals exhibit high nonlinearity and complexity under varying users, manipu-
lation styles, and contact states. When employing spiking neural networks to model pressure perception, the
quality and diversity of training data play a critical role in determining model performance. To address this,
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we design two types of data augmentation strategies aimed at enriching signal diversity and enhancing model
generalization.

Time-Domain Augmentation: 1) Time Shifi: Randomly offsetting the start point of the pressure signal by a
value At to simulate variations in contact timing across different grasping instances. 2) Time Scaling: Applying
linear interpolation to compress or stretch the time series by a factor «, enabling the model to adapt to variations
in interaction speed. Fig.5 illustrates the original pressure signal (Fig.5(a)) along with its augmented versions.
As shown, time shifting (Fig.5(b)) alters the onset of pressure events, while time scaling (Fig.5(c)) changes the
temporal dynamics, effectively emulating different grasping speeds and force application rates.

Feature Perturbation Augmentation: Feature perturbation-based augmentation significantly enriches data di-
versity by introducing controlled variations into feature representations. We adopt two noise injection techniques:
1) Time-domain Gaussian Noise Injection: For each data point x; j,For each pressure data point x; ;, Gaussian noise
€ ~ N(0,0?) (e.g., o = 0.1) is added to simulate realistic sensor fluctuations and environmental noise; 2) Frequency-
domain Modulation: We apply the Discrete Fourier Transform (DFT) to convert signals into the frequency domain,
then selectively amplify low-frequency components by scaling their magnitudes while preserving phase in-
formation. The modulated signal is then reconstructed using the Inverse DFT, yielding time-domain signals
with altered spectral characteristics. Fig. 6 illustrates the effects of these augmentation methods, demonstrating
how they expand the diversity of the training dataset. This two-dimensional augmentation strategy effectively
addresses sample imbalance, mitigates the risk of overfitting to specific data distributions, and enhances the
model’s robustness under noisy conditions.

4.3 Design of Spike Encoding

In this section, we focus on converting continuously varying pressure signals into discrete spike sequences
suitable for subsequent SNN-based processing. As illustrated in Fig. 7(a), a typical tactile signal during grasping
exhibits several distinct temporal phases: an initial near-zero segment corresponding to the inactive state, a
sharp increase indicating contact onset, a stable plateau reflecting a steady grasp, and a final drop denoting
the release phase. Spatially, variations in grasp position and strength lead to complex pressure distributions,
influenced by object geometry and hand posture. Traditional threshold-based encoding (Fig.7(a)), while simple
and hardware-efficient, often fails to capture fine-grained variations near the threshold, leading to significant
information loss. In contrast, frequency-based encoding (Fig.7(b)) assigns spike counts proportional to signal
magnitude across defined value intervals. However, this approach tends to produce excessive spikes in stable,
low-entropy regions—such as during steady grasps—thereby wasting computational and energy resources.
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Fig. 7. How different spike coding methods encode a grasping tactile signal. SparsePulse is designed to reduce the number of
spikes while maintaining key information.

To address this issue, we observe that in typical pressure signals, segments with rapid temporal changes—i.e.,
high-entropy regions—carry more discriminative features essential for object recognition. In contrast, sustained
high-pressure phases during stable grasping tend to be low-entropy and information-sparse. Building on this
insight, we propose a novel spike encoding scheme, SparsePulse, illustrated in Fig.7(c). This method adaptively
increases spike density during brief contact and release phases—where pressure is low but dynamic—capturing
fine-grained temporal details. Conversely, spike generation is suppressed during prolonged, stable holding phases
to reduce redundancy and conserve computational resources. This entropy-aware encoding strategy strikes a
balance between precision and efficiency, significantly lowering power consumption without sacrificing critical
tactile information. The complete encoding procedure of a set of timing pressure values is outlined in Algorithm 1.

ALGORITHM 1: SparsePulse Algorithm

Input: A set of timing pressure values PV; Threshold T; Number of intervals n; Maximum pressure Pys; Maximum
spike count pyay; Step size Ap

Output: Encoded spike train S

Initialize: begin

Initialize empty list: S « 0;

Compute interval width: r « %'

end

foreach data point x € PV do

if x < T then

‘ S.append(0);

end

else
s — min(L#J +1,n);
p & max(pmax — (s = 1) - Ap,0);
S.append(p);

end

end
return S;

Due to inherent noise fluctuations in the sensor’s resting state—which can vary with environmental conditions
and sensor aging—we design a dynamic thresholding mechanism to distinguish between noise and valid pressure
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Fig. 8. Structure of MT-SNN .

signals. The dynamic threshold is computed in real time based on statistical properties (e.g., moving average
and standard deviation) within a sliding temporal window, and is defined as § = y + ko, where k is a tunable
parameter typically set between 2 and 3. Each pressure data point x is first compared with the threshold 6. If
x < T, it is encoded as 0, indicating that the segment contains no salient signal and does not require fine-grained
encoding. When x > T, the signal is segmented for encoding. Assume the supra-threshold values are partitioned
into n intervals, with corresponding boundaries [po, y1, . . ., tin]. For each data point x, its interval index s is
determined by comparing x with the boundary values.

Next, a spike generation function p = f(s) is defined, where p is the number of spikes to be generated. As s
increases, p decreases accordingly. A simple implementation can adopt a linearly decreasing function, such as
P = Pmax — (s — 1) X Ap, where pyax is the maximum number of spikes and Ap is the step size. When pressure
is low (initial contact or release), more spikes are emitted to capture transitions information. When pressure
stabilizes at high levels, fewer spikes suffice to represent steady-state information, reducing overall spike count
and storage costs. Overall, this strategy can improve efficiency while preserving perceptual accuracy.

4.4  MT-SNN: A Multi-task Tactile Spiking Neural Network

In this section, we introduce MT-SNN, a lightweight multi-task SNN architecture designed for simultaneous
recognition of object types and material stiffness. We first present the overall structure of MT-SNN, followed by a
detailed description of its forward and backward propagation mechanisms, which differ fundamentally from
those of conventional artificial neural networks (ANNs).

4.4.1 Network Architecture. MT-SNN exploits the temporal dynamics of spiking neural networks, eliminating
the need for complex sequential models such as LSTMs or Transformers. As illustrated in Fig. 8, the architecture
follows a hierarchical spike-based processing paradigm, consisting of three key components.

Input Layer. Serving as the first stage in processing external tactile signals, the input layer of MT-SNN is
structurally aligned with the spatio-temporal pressure distribution matrix captured by the sensor array. It
comprises K neurons, each corresponding one-to-one with a tactile sensor. These sensors convert complex tactile
inputs into spike sequences, which are transmitted in real time to the input neurons. These input neurons perform
basic functions, primarily responsible for receiving signals and conducting preliminary transmission, resulting in
output spike sequences that closely match the original sequences from the sensors.

Hidden Layer. The hidden layer serves as the core processing area of the neural network, primarily functioning
to deeply integrate and extract features from the signals received from the input layer. Each hidden layer neuron
receives signals from multiple input layer neurons and dynamically computes its membrane potential through
complex integration operations. When the membrane potential surpasses the preset threshold, the neuron
emits a spike, forming a unique spike sequence. The refined processing of signals by hidden layer neurons
is crucial for the network’s efficient feature extraction and accurate pattern recognition, directly influencing
its ability to understand and analyze tactile signals. We employ a hybrid architecture that shares common
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representations while learning task-specific features independently. A LIF layer is first used to extract shared
pressure distribution patterns during object contact. Subsequently, a dual-branch architecture composed of
alternating LIF and fully connected (FC) layer is introduced. The object recognition branch learns spatial features
from the pressure distribution patterns to distinguish object geometries, while the material recognition branch
captures the temporal dynamics of contact pressure to effectively estimate object compliance and hardness.

Output Layer. The output layer consists of M object classification neurons and N material classification neurons,
where each output neuron corresponds to a specific class. They receive processed signals from the hidden layer
and generate their respective output spike trains. For each output neuron, the total number of spikes emitted up
to a given time ¢ is counted, and the predicted class is determined by selecting the neuron with the highest spike
count.

4.4.2  Forward Propagation Mechanism of SNNs. Unlike traditional ANNs that use continuous real-valued activa-
tions, SNNs convey information through discrete spike trains over time. Hence, we now describe the forward
propagation mechanism of SNNs. Their forward propagation relies on the dynamic behavior of biological neurons,
transmitting information via sparse spikes and temporal coding. This process consists of the following key steps.

Membrane Integration. Neurons integrate incoming spikes from presynaptic neurons over time, updating their
membrane potential accordingly. Each spike influences the membrane potential based on its associated synaptic
weight and arrival time. The membrane potential update follows the rule:

u[t]:a.u[t—1]+zwi-xi[t] @)
where « is the leakage coefficient (typically determined by 1), w; is the synaptic weight, and x;[#] is the binary

spike input (0 or 1) from neuron i at time ¢.

Membrane Leakage. In the absence of input, the membrane potential gradually decays over time, emulating the
passive leakage observed in biological neurons. This behavior is modeled using the Leaky Integrate-and-Fire
(LIF) framework. The decay rate « is defined as:

a=e M (3)
where 7 is the membrane time constant.

Spike Firing. When the membrane potential exceeds a predefined threshold uy,, the neuron generates an output
spike. This spike generation process can be mathematically formulated as:

1, ifult
P[t]z{’ 1“[].>uth @)
0, otherwise

After firing, the membrane potential is reset to a predefined value u,,;, and may enter a refractory period during
which no spikes can be generated.

Temporal Iteration. Next, SNNs propagate information through discrete time steps, with each step iteratively
performing the above processes. For example, a 100 ms input sequence may be divided into multiple short time
steps (e.g., At = 1 ms), during which the state of each neuron is updated.

Output Decoding. At the output layer, the class label is typically determined by selecting the neuron with the
highest spike count over a given time window:

§ = argmax ) On(?) (%)

teT
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where O,,(t) denotes the output of the m-th output neuron at time ¢.

Loss Function. A cross-entropy loss computed over the total spike count across time is used independently for
both the object and material classification branches. The final loss L is obtained by averaging the two with equal
weights (0.5), ensuring balanced optimization across both tasks:

L=0.5"Lobj + 0.5 Lipar

4.4.3 Backward Propagation Mechanism of SNNs. Due to the non-differentiability of spike events, traditional back-
propagation cannot be directly applied in SNNs. Two alternative paradigms have been developed: unsupervised
biologically inspired learning and surrogate gradient-based supervised learning.

Spike-Timing-Dependent Plasticity (STDP) [43] is an unsupervised learning mechanism that updates synaptic
weights based on the temporal correlation between pre- and post-synaptic spikes. If a pre-synaptic spike occurs
before a post-synaptic spike, the weight is increased; otherwise, it is decreased. While STDP is biologically
plausible and effective for capturing short-term temporal relationships, it suffers from limitations such as poor
scalability to complex tasks, sensitivity to precise spike timing, and difficulty in modeling long-term dependencies
due to its local and unsupervised nature.

The Surrogate Gradient method [20] approximates the non-differentiable spike firing function by constructing
a differentiable surrogate function, allowing the establishment of an end-to-end supervised learning framework.
For example, using a sigmoid function as a surrogate, the firing function P can be approximated by G(u) =
o (B (u—usp)), where G(u) represents the surrogate function, and § controls the slope of the function. The
derivative of the surrogate function G(u) is near the threshold u;;, exhibits a sharp peak, effectively approximating
the threshold jump behavior of the spike function, thus providing a feasible way for gradient calculation.
Specifically, for the gradient of the loss function L with respect to the weight w, it can be expressed as:

oL dL 9G ou oL
. 22 6
ow 3G ou ow oG @ (©)
By leveraging the derivative of a surrogate function, this method circumvents the non-differentiability of
spike generation, enabling smooth gradient propagation during backpropagation. Moreover, it facilitates efficient

weight updates under the supervised learning framework.

4.5 Model Quantization and deployment

The mapping of SNNs to brain-inspired hardware involves three key stages: model loading and parsing, intermedi-
ate representation generation, and graph optimization verification. Model quantization, as a crucial optimization
technique throughout the mapping process, optimizes hardware resource utilization by determining weight
and activation bit-widths in the intermediate representation stage, and enhances storage density by reducing
weight storage space in the code generation stage, aligning with the goal of run-length encoding compression
for synaptic connection matrices. However, special attention must be paid to quantization-induced accuracy
loss during the optimization verification stage to ensure the quantized model maintains expected performance
levels. This section analyzes the specific causes of quantization-induced accuracy degradation and introduces
SpikeQAT (Spike quantization-aware training). By incorporating quantization awareness during the training
phase, SpikeQAT effectively addresses precision loss issues, ensuring MT-SNN models operate with high accuracy
and low power consumption on neuromorphic hardware.

4.5.1 Analysis of Accuracy Loss in Model Deployment. The Tianjic chip adopts a heterogeneous architecture
that enables the joint execution of SNNs and ANNS. Its FCcore units incorporate 16 MAC arrays optimized for
low-precision operations such as INT8. To deploy models efficiently on-chip, data representations are quantized to
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Fig. 9. Impact of quantization on spike emission. Fig. 10. Hlustration of SpikeQAT.

reduce storage and computation costs, which introduces accuracy degradation. Quantization essentially reduces
the bit-width of data representations to lower storage requirements and computational complexity, which is
critical for the efficient operation of neuromorphic chips. For instance, converting from 32-bit floating-point
(FP32) to 8-bit integer (INT8) substantially changes both the representational range and numerical granularity.
FP32 uses a 1-bit sign, 8-bit exponent, and 23-bit mantissa, supporting a dynamic range of approximately +10%.
In contrast, INT8 compresses values into a fixed range of [-128, 127] using just 8 bits. This conversion inevitably
results in substantial loss of fine-grained information, which is a primary contributor to performance degradation
(is proved in Fig. 18).
During quantization, continuous floating-point values are mapped to discrete integers using rounding:

Q =round (%) (7)

where A is the quantization factor and zero_point denotes the offset. As illustrated in Fig. 9, converting from
32-bit floating point (FP32) to low-bit integers (e.g., INT8 or INT4) causes significant information loss. Due to the
temporal feature in SNNs, such errors affect not only weights but also disrupt spiking dynamics. For example,
a neuron that is supposed to fire upon reaching a specific input threshold may fire prematurely if quantized
weights distort the accumulated input. That is quantization errors accumulate through two critical operations:
synaptic transmission and membrane potential updates and their impact increases exponentially with network
depth.

4.5.2  SpikeQAT : Quantization-Aware Optimization Framework. To address this problem, inspired by simulated

quantization noise techniques, we propose SpikeQAT, a quantization-aware training framework tailored for SNNs.

As shown in Fig. 10, SpikeQAT inserts quantization/dequantization modules between adjacent LIF layers and

within the membrane potential update path. These modules expose the network to realistic quantization effects

during training, enabling it to adapt and learn to compensate for quantization-induced errors via backpropagation.
During forward propagation, quantization is introduced first at weight update using:

Wy = Q(W) = round (%) (8)

where A = —Wm"";_w‘“i“
261

is the quantization factor and b is quantified target number of digits. This process simulates
quantization errors € = W; — W that occur during inference. This operation is followed by dequantization, the

weight is,

W, = WA 9)
Next, we introduce quantization operations Q(+) into the membrane potential u; calculation process, to emulate

quantization influence:

’ u
w = (10)
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Fig. 11. Deployment. Fig. 12. 30 kinds of target objects.

and the membrane potential value after dequantization is:

u, =u,A (11)

This mechanism guides parameter updates toward quantization-friendly values. By jointly optimizing synaptic
weights and membrane dynamics, SpikeQAT aligns the network’s behavior during training and inference, thereby
enhancing deployment performance while minimizing accuracy degradation.

5 Implementation

This section first introduces the experimental setup and deployment strategy, followed by a description of the
data collection process and SNN training methodology.

5.1 Experimental Platform

Flexible Glove-Type Pressure Sensor. A commercial tactile glove RX-G0505M [49] integrating 25 flexible
pressure sensors is employed for data acquisition. Each sensor can be modeled as a pressure-dependent variable
resistor with an active area of 100 mm?, providing a measurement range of 2.5 N-75 N, an accuracy of +2.5 N, a
resolution of 2.5 N, and a typical response time of <10 ms. The sensor array connects to the data acquisition
circuit via FPC ribbon cables. During the data acquisition, the maximum ADC sampling frequency of 100 Hz.
After analog-to-digital conversion, data is transmitted to the computing platform/PC using the USB-12C protocol
(as shown in Fig. 11(c)).

PC and Server. A PC running MATLAB and Python 3.8.10 is used for denoising, data augmentation, and spike
encoding. The preprocessed samples are then uploaded to a server for model training. The server runs Ubuntu
16.04.1 (64-bit), equipped with an Intel Core i7-7820X processor (3.60 GHz), 64 GB of RAM, and an NVIDIA RTX
2080Ti GPU. Model training is conducted using the PyTorch 2.1.0 framework. Inference is executed within a
Docker environment (Ubuntu 20.04.6 LTS, Linux kernel 4.15.0-142), supporting Python 3.8.10 and integrated with
the LynSDK 1.20.0 software stack.

Neuromorphic Computing Platform. The trained network is deployed on the publicly available edge com-
puting platform HS140, which integrates the KA200 neuromorphic processor (Tianjic chip) developed by Lynxi
Technology [15, 48] and a dedicated ARM Cortex-A55 CPU for independent data processing. Tianjic chip adopts
an innovative architecture that fuses in-memory computing, massively parallel cores, and heterogeneous in-
tegration. The HS140 host is also equipped with an 8-core Cortex-A55 processor and 16 GB RAM, running an
embedded Ubuntu 18.04 OS. It supports the embedded version of LynSDK 1.20.0, enabling efficient and accurate
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Table 1. 30 Objects and Their Hardness Categories

Hardness Objects

Hard 22 Mini Fan 13 Mouse 12 Red Bull 0 Caddy 10 Cube 19 Expansion Dock 24 Hexagonal Prism Box 23 Egg
Medium-Hard 21 Polygonal Box 8 Coca Cola 29 Medicine Box 17 Medicine Bottle 26 Candy Jar 7 Creatine Bottle 27 Hand-muscle Developer
Medium-Soft 6 Tape 1 Orange 20 Bell Pepper 5 Cosmetic Bottle 14 Tennis Ball 28 Banana 25 Disposable Towel /

Soft 4 Sponge 9 Bread 16 Bear Doll 11 Rubber dinosaur 3 Rubber Dog 2 Tissues 18 Bath Puff 15 Plush Toy

neural network mapping and inference. The chip is programmed using the Lyngor 1.19.2 graphical programming
framework, which supports both basic and custom operators, is compatible with mainstream deep learning
frameworks (e.g., PyTorch, TensorFlow), and generates instruction files for the chip via a parsing and compilation
process. These files serve as the execution graphs for inference on the chip.

The complete real-time system diagram is shown in Fig. 11, which includes the pressure sensors and the
neuromorphic hardware. The sensors are connected to a data acquisition module, which transmits data to the
HS140 computation platform via USB and the 12C protocol. The CPU of HS140 converts the incoming pressure
sequences into spike trains that serve as input to the pre-trained SNN for real-time prediction. Note that, during
the SNN training phase, the acquisition module is connected to a PC to collect a large-scale dataset. The spiking
neural network (SNN) is then designed and trained on the PC with GPU acceleration.

5.2 Experiment Setup

Data Collection. To ensure standardized and reproducible grasping actions, we adopted the authoritative human
grasp taxonomy established by [13]. Specifically, we primarily used two representative grasp types — medium
wrap and tip pinch - to collect pressure distribution data from different objects. We invited 20 healthy volunteers
wearing sensor-equipped gloves to perform standardized grasping of 30 everyday objects, following reference
images to ensure consistent hand postures. Each participant performed 20 grasping actions for each object,
resulting in a total of 12000 samples. The data acquisition circuit sampled data at 60 Hz, collecting 100 frames of
pressure data per grasp. As the pressure sensor array consists of 25 sensing points, each sample is represented as
a 25 x 100 pressure matrix.

Test objects. A comprehensive list of these objects, along with their corresponding hardness classes, is provided
in Table 1. To quantitatively evaluate the hardness classes (soft, medium-soft, medium-hard, and hard) of each
object, we employ three types of Shore hardness durometers [46] to measure the hardness of all test objects.
Specifically, the Shore O durometer was used for materials classified as soft to medium-soft, the Shore A durometer
for medium-soft to medium-hard, and the Shore D durometer for medium-hard to hard materials. The hardness
categories are defined as follows:

e Soft: Materials with a Shore O measurement < 50.

e Medium-soft: Materials with a Shore O measurement > 50 and a Shore A measurement < 50.
e Medium-hard: Materials with a Shore A measurement > 50 and a Shore D measurement < 70.
e Hard: Materials with a Shore D measurement > 70.

5.2.1 Model Training and Hyperparameter Optimization. Training SNN is critical for effectively extracting
spatiotemporal features from input data. Key training parameters are summarized in Table 2. We optimize
network weights using the Adam algorithm. Early stopping is employed with a patience of 10 epochs, halting
training when no improvement in validation loss is observed. To determine the optimal hyperparameters, we
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Table 2. SNN Model Hyperparameters

Parameter Value
Time Steps 100
Hidden Channels 512
i 0.65
Decay 0.389
Learning Rate 0.001

employ the Optuna [3] framework with Tree-structured Parzen Estimator (TPE) sampling [51], performing 30
optimization trials. The search space includes the membrane threshold wy, decay factor, and learning rate. The
configuration yielding the highest test accuracy is selected as the final model.

6 Evaluation

In this section, we first evaluate the overall performance of SpikeToucH, including object and material stiffness
recognition accuracy, power consumption, and real-time inference capability. We then assess the effectiveness of
the proposed pulse encoding module and the quantization-aware optimization strategy. Finally, we examine the
system’s robustness under user variability and sensor failure conditions.

6.1 Overall Performance

6.1.1 Classification Accuracy of Object and Material. All collected samples were first randomly shuffled using
a fixed seed and then split into training and testing sets in an 8:2 ratio. The training set is further augmented
to twice its original size (according to Sec.4.2.2). During training, we applied five-fold cross-validation: in each
fold, 80% of the training set was used for model training, and the remaining 20% for validation to select the
best-performing model. The results are based solely on the held-out test set, which remained completely unseen
during training and validation. Confusion matrices for object and material classification on the test set are shown
in Fig. 13 and Fig. 14, where rows correspond to ground truth classes and columns to predicted classes. The
classification accuracies for object and material recognition reach 92.92% and 92.35%, respectively, demonstrating
the excellent performance of SPIKETouCH.

As shown in Fig. 13, the model achieves high classification accuracy across most object categories. Notably,
"Creatine Bottle" (Class 7) and "Coca Cola" (Class 8) reach 100% accuracy, while "Rubber Dog" (Class 5), "Red
Bull" (Class 12), "Mini Fan" (Class 22), and "Hand-Muscle Developer" (Class 27) all exceed 96%, indicating that
their features are well captured by the model. In contrast, "Cube" (Class 10) shows a relatively lower accuracy of
78.1%, with the majority of misclassifications attributed to confusion with "Tissues" (Class 2, 4.1%). Note that
some rows in the confusion matrix may not sum to exactly 100% due to rounding and minor decimal truncation
in the visualization.

As shown in Fig. 14, the model achieves an average classification accuracy of 92.35% across the four material
categories. The highest performance is observed in the hard category (93.9%), followed by soft (93.7%), medium-
hard (91.4%), and medium-soft (90.4%). Most misclassifications occur between adjacent hardness levels, with the
greatest confusion found in the medium-hard class—4.1% of its samples are misclassified as medium-soft, and
4.3% as hard. This trend suggests that the model effectively captures coarse-grained material differences (e.g.,
soft vs. hard), but struggles more with finer boundaries between adjacent categories. The confusion is largely
due to the gradual transition in tactile feedback between medium-soft and neighboring classes, which leads to
overlapping pressure patterns.
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6.1.2  Real-Time Performance Evaluation. To evaluate the real-time performance of the system, we conducted
a comparative experiment under identical testing conditions using 2400 samples. As shown in Fig. 15, MT-
SNN +Tianjic achieves an average per-sample processing latency of just 20 ms, which is 6.3 faster than the
ANN+GPU solution (126 ms). In terms of object classification accuracy, MT-SNN +Tianjic reaches 92.92%, only
4.3% lower than ANN+GPU (97.22%). These results demonstrate that the proposed system substantially improves
real-time responsiveness while maintaining competitive recognition performance.
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6.1.3 Power Consumption Evaluation. To assess energy efficiency, we compare the power consumption of
various neural network models on two hardware platforms: an NVIDIA GTX 2080Ti GPU and the Tianjic
neuromorphic chip. This experiment involves object recognition across 20 categories using data collected from
only 10 participants. The evaluation considers power consumption, model size, and object classification accuracy.
Model size is measured by parameter storage size in megabytes (MB). The average power consumption per sample
is calculated by subtracting the baseline power (measured with no code running) from the power consumed
during test execution. Power measurements are recorded in watts (W).

As shown in Fig. 16, on the GPU platform, MT-SNN , achieves a power consumption of only 14 W, which is
18.67% of CNN+LSTM (75 W) and 6.21% of ResNet18+Transformer (225.3 W). Its model size (2.02 MB) is only
3.39% of the largest model while maintaining a 95% accuracy, just 2.18% lower than the best-performing model. On
the Tianjic platform, MT-SNN further demonstrates its superiority-with only 1 W power consumption (a 92.86% -
99.5% reduction), 94.88% accuracy (3.34% - 12.38% higher than others), and the smallest model size (0.54 MB).
Notably, traditional models experience up to 9.06% accuracy drop when migrated to Tianjic, while MT-SNN drops
only 0.12%, highlighting its excellent adaptability to neuromorphic hardware platform.

6.2 Micro-benchmark

6.2.1 Validation of SparsePulse Encoding. To validate the energy and accuracy advantages of the SparsePulse en-
coding scheme, we conduct a comparative study against threshold and frequency encoding methods. For eval-
uation, single-channel tactile data from 200 tennis ball grasping trials collected from 10 users were used to
assess spike count, while samples from 20 different objects were used to evaluate recognition accuracy. Given
the event-driven nature of SNNs, power consumption is closely tied to spike density - inactive periods incur
minimal static power, while spike generation and processing dominate dynamic energy consumption, spike count
is adopted as a proxy for energy usage.

As shown in Fig. 17, SparsePulse generates an average of 62 spikes — more than threshold encoding (31 spikes),
yet 65.7% fewer than frequency encoding (181 spikes), highlighting its potential for power savings. Experimental
results show that SparsePulse achieves an object recognition accuracy of 97.22%, outperforming threshold encoding
(72.00%) by 25.22%, and closely matching the performance of frequency encoding (98.60%), with only a 0.42%
difference. These results demonstrate the superior energy—accuracy trade-off offered by SparsePulse.

6.2.2 Validation of SpikeQAT Optimization. As discussed in Sec. 4.5, quantization often leads to a reduction
in model accuracy. To evaluate the effectiveness of SpikeQAT in mitigating quantization-induced degradation,
we compare the 20 object classification accuracy of MT-SNN with and without applying SpikeQAT under three
numerical precision settings: 32-bit floating point (FP32), 8-bit integer (INT8), and 4-bit integer (INT4). In the
evaluation, we used tactile signals collected from 10 participants across 20 different objects. The results are shown
in Fig. 18.
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Table 3. Comparison of SpikeToucH with Existing SNN-Based Tactile Perception Methods

Method Accuracy (%) Model Size (MB) Power (W) Delay (ms)
TactileSGNet [16] 81.42 1.13 2.1 26
Method in [47] 90.83 0.79 2 46
DeepTactile [17] 75.15 1.58 23 31
SrikeToucH 92.92 0.31 1.02 20

We observe that the model running at full precision (FP32) achieves an accuracy of 95.00%. Without applying
SpikeQAT, quantization to INT8 results in a significant drop in accuracy to 84.50% (a decrease of 10.50%), and
further down to 74.75% with INT4 (a decrease of 20.25%). In contrast, when SpikeQAT is applied, the INT8 model
achieves 90.75% accuracy, recovering 6.25% compared to the non-SpikeQAT case. For INT4, the accuracy improves
to 84.88%, reducing the accuracy loss to just 10.12% and yielding a 10.13% improvement over the baseline. These
results demonstrate that SpikeQAT effectively mitigates quantization degradation and enhances model robustness
under low-bit settings.

6.2.3 Comparison of State-of-the-art SNN-based Tactile Perception Methods. We reproduced three state-of-the-art
SNN architectures [16, 17, 47], originally designed for tactile perception tasks, and evaluated them on our entire
dataset for a fair comparison. The results of 30 object classification are summarized in Table 3. Our approach is
able to deliver better accuracy to more complex convolution-based models such as those in [16, 17] with a smaller
model size, faster inference time, and lower power consumption. These results demonstrate the effectiveness and
efficiency of our approach, particularly for resource-constrained neuromorphic platforms.

6.3 System Robustness Evaluation

6.3.1 Different Numbers of Training Users. To investigate how the number of training users affects model
performance, we gradually increased the training set size from 8 to 11, 14, 17, and 20 users. For each setting, the
training data was split into training and validation subsets in an 8:2 ratio to select the best-performing model.
As shown in Fig. 19(a), the average object classification accuracy consistently exceeds 90% across all training
user settings, demonstrating the model’s robustness to variations in the number of training users. Furthermore,
increasing the number of users leads to reduced performance variance, indicating enhanced generalization
capability.

6.3.2 Cross-User Robustness. To evaluate the system’s generalizability, we conducted a cross-user experiment by
training the model on data from 15 users and testing it on 5 previously unseen users. As shown in Fig. 19(b),
the model achieved an average accuracy of 91.4% on training users, but dropped to 72.33% on unseen users
U0-U5, with individual accuracies ranging from 66.2% to 77.9%. This performance gap highlights the system’s
limited robustness to user variability, likely caused by differences in hand shape and grasping force, which lead to
varied pressure patterns despite standardized instructions. To address this, future work may incorporate domain
adaptation techniques to enhance cross-user generalization.

6.3.3 Sensor Failure Robustness. To assess the system’s fault tolerance, we simulate sensor failures on the
25-sensor glove. Using a pretrained model, the baseline classification accuracy reaches 95% with all sensors
operational. Sensor failures are introduced by randomly deactivating the data from K sensors (K € [1,25]),
following a Monte Carlo sampling scheme with 50 independent trials for each K value.
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Fig. 19. Robustness evaluation under different conditions.

As shown in Fig. 19(c), classification accuracy gradually declines as the number of failed sensors increases.
When K < 5, the accuracy remains above 80%, indicating a moderate level of fault tolerance. This robustness stems
from the spatial redundancy and feature overlap across different regions of the hand—neighboring sensors often
capture similar pressure patterns, enabling partial compensation for missing inputs. However, as more sensors
fail, critical information about contact location and pressure dynamics is lost, leading to increased intra-class
variance and misclassification.

7 Discussion

This section discusses the current limitations of SpikEToucH and proposes several potential solutions.

Limitation from Grasp Posture. SpikEToucH performs well when grasp postures closely match the standardized
and stable conditions used during training. In such cases, the resulting pressure maps exhibit low intra-class
variance, allowing the SNN to accurately associate inputs with learned features. However, in real-world scenarios,
variations in grasp posture—such as changes in angle, contact region, or timing—can lead to significantly different
pressure distributions for the same object. These variations increase intra-class variance and may be misinterpreted
by the static model, resulting in false predictions under unconstrained conditions.

Limitations in Object Scalability. The system’s scalability is challenged when encountering objects with
high geometric similarity. While it performs well in recognizing objects with distinct shapes, the current model
struggles to differentiate items that share similar base geometries—such as distinguishing a soda can from a pill
bottle, both of which are cylindrical This is because when inter-class similarity is high, the macro-level features
extracted from the overall pressure profile are insufficient to capture the subtle, local details (e.g., the can’s rim or
the bottle’s threads) that define the object’s unique identity. Future work should integrate more powerful feature
extraction networks or fuse multi-modal information to resolve this ambiguity.

Limitations in Fine-Grained Material Classification. While the system effectively distinguishes four coarse
hardness levels, it struggles with fine-grained material differentiation (e.g., between wood and hard plastic, or
silicone and rubber). The success in coarse-grained hardness classification is largely due to the overall magnitude
and temporal trends of the pressure distribution can be captured by our lightweight SNN. However, fine material
recognition often requires extraction of subtle features, such as surface texture-induced pressure gradients or
viscoelastic responses over time. Our current network is not designed to capture such complexity, which limits
its performance on detailed material classification tasks.

Limitation from User Variability. Our system exhibits limited robustness to user variability. Differences
in hand shape, grasp strength, and grasping habits lead to diverse pressure patterns, even under standardized
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instructions. This results in a noticeable performance gap when evaluating on unseen users. Future work may
explore domain adaptation techniques to improve cross-user generalization.

8 Conclusion

We have presented the design, implementation, and evaluation of SpikeToucH, an SNN-based tactile perception
system. By introducing a set of key techniques tailored for neuromorphic hardware, SPIkEToucH achieves
low power consumption, high efficiency, and accurate tactile sensing. Our evaluation, conducted on the Tianji
neuromorphic hardware and tactile perception tasks, demonstrates the effectiveness of SpikeToucH. We hope the
findings and empirical results provided in this work can contribute to further research into optimizing SNN-based
solutions in resource-constrained environments.

Acknowledgments

Thanks the anonymous reviewers for their valuable comments. This work is supported in part by National Natural
Science Foundation of China under Grants (62272388, 62302392), project of Shaanxi Province International Science
and Technology Cooperation Programunder Grants (2024GH-YBXM-10, 2025GH-YBXM-057), and Shaanxi Science
and Technology Innovation Team Program under Grant 2024RSCXTDO05.

References

[1] [n. d.]. Tesla unveils its latest humanoid robot, Optimus Gen 2, in demo video — arstechnica.com. https://arstechnica.com/information-
technology/2023/12/teslas-latest-humanoid-robot- optimus- gen- 2-can-handle-eggs-without- cracking-them/.

[2] Larry F Abbott. 1999. Lapicque’s introduction of the integrate-and-fire model neuron (1907). Brain research bulletin 50, 5-6 (1999),
303-304.

[3] Takuya Akiba, Shotaro Sano, Toshihiko Yanase, Takeru Ohta, and Masanori Koyama. 2019. Optuna: A next-generation hyperparameter
optimization framework. In Proceedings of the 25th ACM SIGKDD international conference on knowledge discovery & data mining.
2623-2631.

[4] Daniel Auge, Julian Hille, Etienne Mueller, and Alois Knoll. 2021. A survey of encoding techniques for signal processing in spiking
neural networks. Neural Processing Letters 53, 6 (2021), 4693-4710.

[5] Jose A Barreiros, Artemis Xu, Sofya Pugach, Narahari Iyengar, Graeme Troxell, Alexander Cornwell, Samantha Hong, Bart Selman,
and Robert F Shepherd. 2022. Haptic perception using optoelectronic robotic flesh for embodied artificially intelligent agents. Science
Robotics 7, 67 (2022), eabi6745.

[6] Libo Chen, Sanja Karilanova, Soumi Chaki, Chenyu Wen, Lisha Wang, Bengt Winblad, Shi-Li Zhang, Ayca Ozgelikkale, and Zhi-Bin
Zhang. 2024. Spike timing-based coding in neuromimetic tactile system enables dynamic object classification. Science 384, 6696 (2024),
660-665.

[7] Wengiang Chen, Shupei Lin, Zhencan Peng, Farshid Salemi Parizi, Seongkook Heo, Shwetak Patel, Wojciech Matusik, Wei Zhao, and
John Stankovic. 2024. ViObject: harness passive vibrations for daily object recognition with commodity smartwatches. Proceedings of
the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies 8, 1 (2024), 1-26.

[8] Sayeed Shafayet Chowdhury, Isha Garg, and Kaushik Roy. 2021. Spatio-temporal pruning and quantization for low-latency spiking
neural networks. In 2021 International Joint Conference on Neural Networks (IJCNN). IEEE, 1-9.

[9] Sungjun Chun, Jong Seok Kim, Yonghyun Yoo, Yoonho Choi, Seung Joon Jung, Dongki Jang, others, and Sung Park. 2021. An artificial
neural tactile sensing system. Nature Electronics 4, 6 (2021), 429-438. https://doi.org/10.1038/s41928-021-00585-x

[10] Javad Dargahi and Siamak Najarian. 2004. Human tactile perception as a standard for artificial tactile sensing—a review. The international
Jjournal of medical robotics and computer assisted surgery 1, 1 (2004), 23-35.

[11] Mike Davies, Narayan Srinivasa, Tsung-Han Lin, Gautham Chinya, Yongqiang Cao, Sri Harsha Choday, Georgios Dimou, Prasad Joshi,
Nabil Imam, Shweta Jain, et al. 2018. Loihi: A neuromorphic manycore processor with on-chip learning. leee Micro 38, 1 (2018), 82-99.

[12] LeiDeng, Yujie Wu, Xing Hu, Ling Liang, Yufei Ding, Guoqi Li, Guangshe Zhao, Peng Li, and Yuan Xie. 2020. Rethinking the performance
comparison between SNNS and ANNS. Neural networks 121 (2020), 294-307.

[13] Thomas Feix, Javier Romero, Herbert B Schmiedmayer, Aaron M Dollar, and Danica Kragic. 2015. The grasp taxonomy of human grasp
types. IEEE Transactions on Human-Machine Systems 46, 1 (2015), 66-77. https://doi.org/10.1109/THMS.2015.2470657

[14] Samanwoy Ghosh-Dastidar and Hojjat Adeli. 2009. Spiking neural networks. International journal of neural systems 19, 04 (2009),
295-308.

[15] Github. [n. d.]. Edge computing host HS140. Website. https://github.com/XuanWang-kate/lynxi.git.

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 9, No. 4, Article 242. Publication date: December 2025.


https://arstechnica.com/information-technology/2023/12/teslas-latest-humanoid-robot-optimus-gen-2-can-handle-eggs-without-cracking-them/
https://arstechnica.com/information-technology/2023/12/teslas-latest-humanoid-robot-optimus-gen-2-can-handle-eggs-without-cracking-them/
https://doi.org/10.1038/s41928-021-00585-x
https://doi.org/10.1109/THMS.2015.2470657
https://github.com/XuanWang-kate/lynxi.git

[16]
(17]
(18]
(19]

[20]

SpikeToucH: Optimizing Spike Neural Networks for Tactile Perception « 242:23

Fuqiang Gu, Weicong Sng, Tasbolat Taunyazov, and Harold Soh. 2020. TactileSGNet: A Spiking Graph Neural Network for Event-based
Tactile Object Recognition. In Proceedings of the IEEE/RST International Conference on Intelligent Robots and Systems (IROS).

Fangming Guo, Fangwen Yu, Mingyan Li, Chao Chen, Jinjin Yan, Yan Li, Fugiang Gu, Xianlei Long, and Songtao Guo. 2024. Event-Driven
Tactile Sensing With Dense Spiking Graph Neural Networks. IEEE Transactions on Instrumentation and Measurement (2024).

Zhixian Hu, Lan Lin, Waner Lin, Yingtian Xu, Xuan Xia, Zhengchun Peng, Zhenglong Sun, and Ziya Wang. 2023. Machine learning for
tactile perception: advancements, challenges, and opportunities. Advanced Intelligent Systems 5, 7 (2023), 2200371.

Peng Kang, Srutarshi Banerjee, Henry Chopp, Aggelos Katsaggelos, and Oliver Cossairt. 2023. Boost event-driven tactile learning with
location spiking neurons. Frontiers in Neuroscience 17 (2023), 1127537.

Saeed Reza Kheradpisheh, Maryam Mirsadeghi, and Timothée Masquelier. 2022. Spiking neural networks trained via proxy. IEEE Access
10 (2022), 70769-70778.

[21] Jaehun Kim, Sungpil Kim, Jaewon Kim, Hyun Hwang, Jaeyoung Kim, Daehoon Park, and Unyong Jeong. 2020. Object shape recognition

using tactile sensor arrays by a spiking neural network with unsupervised learning. In 2020 IEEE International Conference on Systems,
Man, and Cybernetics (SMC). IEEE, 178-183. https://doi.org/10.1109/SMC42975.2020.9283337

[22] Jin Kyong Kim, Cho Rok Lee, Sang-Wook Kang, Jong Ju Jeong, Kee-Hyun Nam, and Woong Youn Chung. 2024. Expansion of thyroid

(23]

[24]
[25]

[26]

surgical territory through 10,000 cases under the da Vinci robotic knife. Scientific Reports 14, 1 (2024), 7555.

Taeyoon Kim, Suman Hu, Jaewook Kim, Joon Young Kwak, Jongkil Park, Suyoun Lee, Inho Kim, Jong-Keuk Park, and YeonJoo Jeong.
2021. Spiking neural network (snn) with memristor synapses having non-linear weight update. Frontiers in computational neuroscience
15 (2021), 646125.

Taehyeong Kim, Jaechun Kim, Inchan You, Jongho Oh, Sung-Phil Kim, and Unyong Jeong. 2022. Dynamic tactility by position-encoded
spike spectrum. Science Robotics 7, 63 (2022), eabl5761. https://doi.org/10.1126/scirobotics.abl5761

Espen Knoop, Moritz Bacher, and Paul Beardsley. 2017. Contact pressure distribution as an evaluation metric for human-robot hand
interactions. In HRI 2017 Workshop: Towards Reproducible HRI Experiments: Scientific Endeavors, Benchmarking and Standardization.
Chen Li, Lei Ma, and Steve Furber. 2022. Quantization framework for fast spiking neural networks. Frontiers in Neuroscience 16 (2022),
918793.

[27] Jing Shuang Li, Anish A Sarma, Terrence J Sejnowski, and John C Doyle. 2023. Internal feedback in the cortical perception—action loop

(28]

[29]
(30]
(31]

(32]

(33]
(34]

(35]

(36]

(37]

enables fast and accurate behavior. Proceedings of the National Academy of Sciences 120, 39 (2023), e2300445120.

Zenan Lin, Kai Chong Lei, Shilong Mu, Ziwu Song, Yuan Dai, Wenbo Ding, and Xiao-Ping Zhang. 2022. Multimodal surface sensing
based on hybrid flexible triboelectric and piezoresistive sensor. In Adjunct Proceedings of the 2022 ACM International Joint Conference on
Pervasive and Ubiquitous Computing and the 2022 ACM International Symposium on Wearable Computers. 421-426.

Shan Luo, Wenxuan Mou, Kaspar Althoefer, and Hongbin Liu. 2015. Novel tactile-sift descriptor for object shape recognition. IEEE
Sensors Journal 15, 9 (2015), 5001-5009.

Changze Lv, Yansen Wang, Donggqi Han, Xiaoqing Zheng, Xuanjing Huang, and Dongsheng Li. 2024. Efficient and effective time-series
forecasting with spiking neural networks. arXiv preprint arXiv:2402.01533 (2024).

Wolfgang Maass. 1997. Networks of spiking neurons: the third generation of neural network models. Neural networks 10, 9 (1997),
1659-1671.

Luca Massari, Giulia Fransvea, Jessica D’Abbraccio, Mariangela Filosa, Giuseppe Terruso, Andrea Aliperta, Giacomo D’Alesio, Martina
Zaltieri, Emiliano Schena, Eduardo Palermo, et al. 2022. Functional mimicry of Ruffini receptors with fibre Bragg gratings and deep
neural networks enables a bio-inspired large-area tactile-sensitive skin. Nature Machine Intelligence 4, 5 (2022), 425-435.

Kazuya Matsuo, Kouji Murakami, Tsutomu Hasegawa, and Ryo Kurazume. 2008. A decision method for the placement of mechanical
tactile elements for grasp type recognition. In SENSORS, 2008 IEEE. IEEE, 1472-1475.

Mahmoud Meribout, Natnael Abule Takele, Olyad Derege, Nidal Rifiki, Mohamed El Khalil, Varun Tiwari, and Jing Zhong. 2024. Tactile
sensors: A review. Measurement (2024), 115332.

Paul A Merolla, John V Arthur, Rodrigo Alvarez-Icaza, Andrew S Cassidy, Jun Sawada, Filipp Akopyan, Bryan L Jackson, Nabil Imam,
Chen Guo, Yutaka Nakamura, et al. 2014. A million spiking-neuron integrated circuit with a scalable communication network and
interface. Science 345, 6197 (2014), 668—673.

Vimal Mollyn, Karan Ahuja, Dhruv Verma, Chris Harrison, and Mayank Goel. 2022. SAMoSA: Sensing activities with motion and
subsampled audio. Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies 6, 3 (2022), 1-19.

William Navaraj and Ravinder Dahiya. 2019. Fingerprint-enhanced capacitive-piezoelectric flexible sensing skin to discriminate static
and dynamic tactile stimuli. Advanced Intelligent Systems 1, 7 (2019), 1900051.

[38] Jodo D Nunes, Marcelo Carvalho, Diogo Carneiro, and Jaime S Cardoso. 2022. Spiking neural networks: A survey. IEEE access 10 (2022),

60738-60764.

[39] Jing Pei, Lei Deng, Sen Song, Mingguo Zhao, Youhui Zhang, Shuang Wu, Guanrui Wang, Zhe Zou, Zhenzhi Wu, Wei He, et al. 2019.

(40]

Towards artificial general intelligence with hybrid Tianjic chip architecture. Nature 572, 7767 (2019), 106-111.
Balint Petro, Nikola Kasabov, and Rita M Kiss. 2019. Selection and optimization of temporal spike encoding methods for spiking neural
networks. IEEE transactions on neural networks and learning systems 31, 2 (2019), 358-370.

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 9, No. 4, Article 242. Publication date: December 2025.


https://doi.org/10.1109/SMC42975.2020.9283337
https://doi.org/10.1126/scirobotics.abl5761

242:24 « Zhao et al.

[41]

[42]

[43]
(44]

(45]

(55]

[56]

(57]

(58]

Clemens JS Schaefer and Siddharth Joshi. 2020. Quantizing spiking neural networks with integers. In International Conference on
Neuromorphic Systems 2020. 1-8.

Minwoo Seong, Gwangbin Kim, Jaehee Lee, Joseph DelPreto, Wojciech Matusik, Daniela Rus, and SeungJun Kim. 2024. Intelligent
Seat: Tactile Signal-Based 3D Sitting Pose Inference. In Companion of the 2024 on ACM International Joint Conference on Pervasive and
Ubiquitous Computing. 791-796.

Sen Song, Kenneth D Miller, and Larry F Abbott. 2000. Competitive Hebbian learning through spike-timing-dependent synaptic plasticity.
Nature neuroscience 3, 9 (2000), 919-926.

Fuchun Sun, Chunfang Liu, Wenbing Huang, and Jianwei Zhang. 2016. Object classification and grasp planning using visual and tactile
sensing. IEEE Transactions on Systems, Man, and Cybernetics: Systems 46, 7 (2016), 969-979.

Subramanian Sundaram, Petr Kellnhofer, Yunzhu Li, Jun-Yan Zhu, Antonio Torralba, and Wojciech Matusik. 2019. Learning the signatures
of the human grasp using a scalable tactile glove. Nature 569, 7758 (2019), 698-702.

Syntek. 2025. German Shore Durometer for Objects Hardness Testing (Digital Type A/C/D). Taobao. July 29, 2025. https://detail.tmall.
com/item.htm?from=cart&id=910656265200.

Tasbolat Taunyazov, Yansong Chua, Ruihan Gao, Harold Soh, and Yan Wu. 2020. Fast texture classification using tactile neural coding
and spiking neural network. In 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE, 9890-9895.
Lynxi Technology. [n. d.]. Edge computing host HS140. Website. https://www.lynxi.com/lingqisupsupKA200xilie/34.html.

Rouxi Technology. [n. d.]. RX-G0505M flexible glove-type force sensors. Website. http://www.roxifsr.com/productinfo/2109960.html.
Chelsea Tymms, Esther P Gardner, and Denis Zorin. 2018. A quantitative perceptual model for tactile roughness. ACM Transactions on
Graphics (TOG) 37, 5 (2018), 1-14.

Shuhei Watanabe. 2023. Tree-structured parzen estimator: Understanding its algorithm components and their roles for better empirical
performance. arXiv preprint arXiv:2304.11127 (2023).

Liangshun Wu, Lisheng Xie, Jianwei Xue, Faquan Chen, Qingyang Tian, Yifan Zhou, Ziren Wu, Rendong Ying, and Peilin Liu. 2024.
SPRCPI: An Efficient Tool for SNN Models Deployment on Multi-Core Neuromorphic Chips via Pilot Running. In 2024 IEEE International
Symposium on Circuits and Systems (ISCAS). IEEE, 1-5.

Kashu Yamazaki, Viet-Khoa Vo-Ho, Darshan Bulsara, and Ngan Le. 2022. Spiking neural networks and their applications: A review.
Brain sciences 12, 7 (2022), 863.

Man Yao, Ole Richter, Guangshe Zhao, Ning Qiao, Yannan Xing, Dingheng Wang, Tianxiang Hu, Wei Fang, Tugba Demirci, Michele
De Marchi, et al. 2024. Spike-based dynamic computing with asynchronous sensing-computing neuromorphic chip. Nature Communica-
tions 15, 1 (2024), 4464.

Zukun Yu, Jing Yang, Qin Ran, Shaobo Li, and Zhidong Su. 2024. G2T-SNN: Fusing topological graph and Gaussian prior spiking neural
networks for tactile object recognition. IEEE Sensors Journal (2024).

Malu Zhang, Jiadong Wang, Jibin Wu, Ammar Belatreche, Burin Amornpaisannon, Zhixuan Zhang, Venkata Pavan Kumar Miriyala,
Hong Qu, Yansong Chua, Trevor E Carlson, et al. 2021. Rectified linear postsynaptic potential function for backpropagation in deep
spiking neural networks. IEEE transactions on neural networks and learning systems 33, 5 (2021), 1947-1958.

Jiaxue Zhu, Xumeng Zhang, Rui Wang, Ming Wang, Pei Chen, Lingli Cheng, Zuheng Wu, Yongzhou Wang, Qi Liu, and Ming Liu. 2022.
A heterogeneously integrated spiking neuron array for multimode-fused perception and object classification. Advanced Materials 34, 24
(2022), 2200481

Bohan Zhuang, Chunhua Shen, Mingkui Tan, Lingqiao Liu, and Ian Reid. 2019. Structured binary neural networks for accurate image
classification and semantic segmentation. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition. 413-422.

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 9, No. 4, Article 242. Publication date: December 2025.


https://detail.tmall.com/item.htm?from=cart&id=910656265200
https://detail.tmall.com/item.htm?from=cart&id=910656265200
https://www.lynxi.com/lingqisupsupKA200xilie/34.html
http://www.roxifsr.com/productinfo/2109960.html

	Abstract
	1 Introduction
	2 Related Work
	3 Preliminary
	3.1 Spiking Neural Networks
	3.2 Neuromorphic Computing Platforms

	4 System Design
	4.1 Overview of SpikeTouch
	4.2 Data Preprocessing
	4.3 Design of Spike Encoding
	4.4 MT-SNN: A Multi-task Tactile Spiking Neural Network
	4.5 Model Quantization and deployment

	5 Implementation
	5.1 Experimental Platform
	5.2 Experiment Setup

	6 Evaluation
	6.1 Overall Performance
	6.2 Micro-benchmark
	6.3 System Robustness Evaluation

	7 Discussion
	8 Conclusion
	References

