
9

RF-Identity: Non-Intrusive Person Identification Based On
Commodity RFID Devices

CHAO FENG, Northwest University, IoT Research Center-Northwest University, China
JIE XIONG, University of Massachusetts Amherst, USA
LIQIONG CHANG, Northwest University, International Joint Research Centre for Battery-free IoT, China
FUWEI WANG∗, Northwest University, Northwest University-Jingdong Wisdom Cloud Joint Research Center
for AI & IoT, China
JU WANG, IoT Research Center- Northwest University, China
DINGYI FANG, Northwest University, IoT Research Center-Northwest University, International Joint Research
Centre for Battery-free IoT, China

Person identification plays a critical role in a large range of applications. Recently, RF based person identification becomes a
hot research topic due to the contact-free nature of RF sensing that is particularly appealing in current COVID-19 pandemic.
However, existing systems still have multiple limitations: i) heavily rely on the gait patterns of users for identification;
ii) require a large amount of data to train the model and also extensive retraining for new users and iii) require a large
frequency bandwidth which is not available on most commodity RF devices for static person identification. This paper
proposes RF-Identity, an RFID-based identification system to address the above limitations and the contribution is threefold.
First, by integrating walking pattern features with unique body shape features (e.g., height), RF-Identity achieves a high
accuracy in person identification. Second, RF-Identity develops a data augmentation scheme to expand the size of the training
data set, thus reducing the human effort in data collection. Third, RF-Identity utilizes the tag diversity in spatial domain to
identify static users without a need of large frequency bandwidth. Extensive experiments show an identification accuracy of
94.2% and 95.9% for 50 dynamic and static users, respectively.
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Fig. 1. The deployment of RF-Identity consists of a UHF-RFID tag array and a directional antenna.

1 INTRODUCTION
Person identification is a process of identifying an individual based on pre-recorded information. Many appli-
cations benefit from the identification of users. For example, there can be multiple occupants in a smart home
environment. It is useful to know each user’s identity non-intrusively to provide personalized services. For
instance, when a user walks into the living room and turns on the TV, the TV can automatically switch to the
user’s favorite channel. The room temperature and lighting conditions can also be adjusted based on the user’s
preference. The system can also prevent children from operating risky home appliances such as micro-oven
through user identification. Moreover, without a need for card touch, a smart door can identify and allow an
authorized user to enter the room.
Traditional person identification systems use either Fingerprint [21], Voiceprint [8, 41] or camera [19, 32].

Although they have been used for decades, there are still limitations with these approaches. Camera and voice-
based solutions may raise privacy concerns, while fingerprint requiring user contact is not a desirable scheme
in current COVID-19 pandemic. Furthermore, these approaches still need user involvement. For example, for
camera-based approaches, to make sure the camera can capture the user’s face, the system usually entails the
user to move multiple times physically.
Recently, RF-based person identification systems [16, 18, 52] have attracted a lot of research interests due

to the appealing sensor-free and contact-free (non-intrusive) nature. Though promising, these identification
systems still have multiple limitations, preventing them from being adopted in real-world applications. First, most
existing systems rely only on walking patterns for user identification and assume a user keeps the same walking
pattern during both training and identification phases [40, 52, 53]. This is not always true. Even the same user
may exhibit large variations on his/her walking patterns due to physiological and emotional changes, resulting
in identification errors. Second, existing systems require collecting a large amount of data for fine-grained
person identification [11, 20, 30] and extensive retraining when new users come in, which is time-consuming
and labor-intensive. Third, most existing systems require the user to move (e.g., wave the hand or walk) for
identification. It is challenging for existing approaches to identify a static person. The very few approaches which
are capable of identifying static users require a large frequency bandwidth [9, 13] which is not available at most
commodity hardware to extract richer features.

To address the above issues, we propose RF-Identity, an RFID-based person identification system in this paper.
Compared with Wi-Fi technology, Ultra-High-Frequency (UHF) RFID tags are cheap, small, and flexible for
deployment. Moreover, they do not need any battery support due to the passive nature and can harvest power
from the signals for backscatter transmission. The proposed system has three advantages. First, RF-Identity
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combines the unique behavioral (walking pattern) features and the physiological (body shape) features of a user
acquired from RFID tags, as illustrated in Fig. 1. The proposed system is therefore more robust and accurate
than existing systems that rely only on the walking patterns. Second, RF-Identity can accommodate new users
without retraining. Thus, it significantly reduce the amount of human effort and time cost. Third, RF-Identity can
accurately identify static users without requiring a large bandwidth. To achieve these objectives, RF-Identity
needs to address the following challenges.
Challenge 1: How to achieve robust person identification when a user’s walking pattern varies? To tackle

this challenge, we exploit multiple RFID tags to extract not just the walking pattern features but also body shape
(e.g., height and width) features for identification. To obtain the body shape features, our key observation is
that by carefully deploying the tags, the users with different heights and widths will cause different received
signal amplitude changes. Thus, we devise a body shape extraction scheme based on the radio tomographic
imaging (RTI) technique [44]. To obtain the walking pattern features, we design an attention-based module [4]
combined with a residual network module to learn the walking pattern. Finally, by integrating the walking
pattern and the body shape features through a hybrid deep learning framework, RF-Identity can achieve robust
and accurate person identification.
Challenge 2: How to use limited amount of data to train a deep learning network for person identification

and adapt it to new users without retraining? To deal with this challenge, we first design a data augmentation
method to expand the size of the training data set, which dramatically reduces the data collection effort. Then,
we develop a transfer learning method to adapt the trained network for new user identification. The intuition is
that the neural network weights of the previously trained feature extraction module are still valid for new users.
Thus, instead of retraining the whole network, we freeze the weights of the feature extraction module and only
fine-tune parameters of the network’s updating module (i.e., fully-connected layers) that are the key for adapting
the model to new users.
Challenge 3: How to accurately identify a static user without a large frequency bandwidth? When a user is

static, we are not able to employ movement information such as walking patterns for identification. Thus, most
existing systems have difficulties identifying static users [11, 16]. To address this problem, RF-Identity exploits
tag diversity in spatial domain to construct phase and amplitude profiles as the static user’s biometric features.
Our experiment results show that different users have distinguishable phase and amplitude profiles. To achieve a
high accuracy, we present a weight-based distance method to differentiate profiles among different users.
We implement our system with commodity RFID devices (12 cheap tags and one reader) and evaluate the

system performance in a typical lab environment. Extensive experiments demonstrate RF-Identity can identify 50
volunteers at an average accuracy of 94.2% and 95.9% when users are walking and static, respectively.

Contribution: The main contributions of this work are as follows:
• To the best of our knowledge, this work is the first attempt to achieve person identification for both dynamic
and static persons using commodity RFID devices.

• We propose a hybrid deep learning model that can efficiently utilize both walking pattern and body shape
features to achieve robust and accurate dynamic person identification. We also develop a weight-based
profile method to obtain rich features for static user identification.

• Extensive real-world experiments with 50 volunteers demonstrate the effectiveness and robustness of
RF-Identity.

The rest of this paper is organized as follows. We first present the background knowledge in Section 2. Then
Section 3 presents the system overview of RF-Identity. The details of system design are described in Section 4.
The implementation and evaluation of the system are presented in Section 5 and Section 6 respectively. Section 7
discusses the limitations of RF-Identity followed by related work in Section 8. Finally, we conclude this work in
Section 9.
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Fig. 2. The phase change of received signal when a subject walks in the detecting area.

2 BACKGROUND
In this section, we first introduce the technical background of RFID system. Then, we conduct two preliminary
studies to show the phase and amplitude variations when volunteers walk through and stand in the sensing area.

2.1 RFID Basics
An Ultra-High-Frequency (UHF) RFID system usually consists of a reader and several passive tags. The reader
sends out a continuous periodic signal to activate nearby tags, and the tags change their antenna impedance
to reflect signal back to the reader. The reader can then obtain the channel information including both phase
and amplitude measurements [14, 42]. To understand how a user affects the received signal when a user travels
through the sensing area, we consider a typical multipath indoor scenario in Fig. 2(a). We can see that the signal
propagates along three paths including the line-of-sight (LoS) path, the reflection path from a wall, and the
reflection path from a moving user. If we assume there are 𝑞 number of reflection paths from the moving user,
the received signal can be described as:

𝑠 (𝑡) = 𝛼𝑆𝑒 𝑗𝜑𝑆 +
∑
𝑞

𝛼𝑞𝑒
𝑗 ( 2𝜋

𝜆

∫
𝑣𝑞 (𝑡 )𝑑𝑡+𝜑𝑑𝑒𝑣) (1)

where 𝛼𝑆𝑒 𝑗𝜙𝑆 is the combined complex signal containing the LoS path and static multipath, 𝛼𝑞 is the amplitude
of the 𝑞-𝑡ℎ path reflected from the human body, 𝑣𝑞 (𝑡) is the path length change velocity corresponding to the
𝑞-𝑡ℎ path at time 𝑡 , 𝜆 denotes the signal wavelength, and 𝜙𝑑𝑒𝑣 is a constant phase offset induced by the tag and
reader circuit.
Based on Equation (1), we find an insight that a user’s presence or movement in the area of interest leads

to fluctuations of the received signal. As shown in Fig. 2(b), when the dynamic component changes, the phase
and amplitude of the composite component change accordingly. This implies that the phase and amplitude
information of the composite signal can be used to detect a user’s presence and movement. Specifically, we can
exploit the phase and amplitude readings to obtain the information of the user such as the walking pattern.
Furthermore, information from multiple tags can be combined to obtain richer information of the user.

2.2 Feasibility Study and Analysis
To better understand the correlation between the signal readings and user behavioral/physiological characteristics
(i.e., gait and the user body shape), we conduct two experiments at the lab entrance. Three tags and a directional
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(b) Phase readings for Volunteer 2.
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Fig. 3. The phase and amplitude readings of Volunteer 1 and Volunteer 2 when they travel through the door attached with
RFID tags.
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Fig. 4. The phase and amplitude readings vary when users stand in a fixed position facing the door attached with RFID tags.

antenna are deployed at two sides of the door. Tags are placed in a line and adjacent tags have a spacing of 0.3𝑚.
The width of the door is 1.5𝑚. In the first experiment, we let two volunteers walk naturally through the sensing
area one by one. Fig. 3 shows the phase and amplitude readings collected for volunteer 1 and volunteer 2. We
can see that (i) different tags have different amounts of phase and amplitude changes when a human subject
goes through the area. Particularly, when the subject blocks the LoS path, the variations are large; (ii) different
subjects cause different amounts of changes in phase and amplitude readings. These observations imply that the
phase and amplitude variations can provide us the physical and behavioral characteristics of the subject, which
can be utilized for person identification.

To illustrate RF-Identity’s basic idea for static person identification, in the second experiment, two volunteers
are asked to stand still at a same position for a period of 10 seconds. We collect 20 measurements for each of
them. Fig. 4 shows the phase and amplitude readings of each tag when different users stand at a same position.
We observe that different users cause different amounts of phase and amplitude at each tag. The observation
indicates that it is possible to use the phase and amplitude readings collected at multiple tags for static person
identification.
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3 SYSTEM OVERVIEW
RF-Identity is a low-cost person identification system built on commodity RFID devices. It involves one reader
equippedwith one antenna andmultiple tags. The basic idea of RF-Identity is to extract unique behavioral/physiological
characteristics to differentiate users when a user appears in the area of interest. The system architecture is shown
in Fig. 5, which consists of the following modules:
Data Collection Module: RF-Identity collects a set of phase/amplitude readings as the baseline data when

there is no user. Then, it extracts another set of readings when a user appears.
Data Pre-processing Module: Due to the environmental noise and hardware imperfection, the collected

phase and amplitude readings cannot be directly employed for feature extraction. RF-Identity uses the discrete
wavelet transform (DWT) algorithm to remove the environmental noise and obtain the clean phase and amplitude
readings. After that, RF-Identity employs a motion segmentation scheme to segment the subject motion for
feature extraction.
Feature Extraction Module: For the dynamic user (walking) case, RF-Identity first designs a data augmen-

tation method to reduce the amount of human effort in data collection. Then a hybrid deep learning model is
developed to extract and integrate the human behavioral and physiological features. Specifically, an attention-
based deep learning module and a residual network are designed to obtain the human walking pattern features,
and a body shape estimation module is designed to obtain the physiological features. In addition, RF-Identity
introduces a transfer learning method to adapt the network for new users. In the static case, RF-Identity leverages
spatially deployed tags to construct phase and amplitude profiles, and designs a weight-based method to measure
the similarities of user profiles.
Person Identification and Authentication Module: In this module, the extracted features are fed into the

SVM classifier or SVDD classifier for person identification.

4 SYSTEM DESIGN
In this section, we detail the system design of RF-Identity including data pre-processing, feature extraction, and
person identification/spoof detection.

4.1 Data Pre-processing
In this sub-section, the system performs a set of pre-processing steps to obtain clean phase and amplitude readings.
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Fig. 6. The phase and amplitude readings.
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Fig. 7. The walking detection and segmentation using energy-based and variance-based sliding window.

4.1.1 Signal Denoising. Due to environmental noise and hardware imperfection, the collected phase and ampli-
tude data are corrupted by noise (Fig. 6(a) and Fig. 6(c)). We employ the DWT algorithm [7] to help remove the
noise. The key idea of the DWT filter is that the wavelet coefficient of noise is smaller than that of the signal
after the raw signal (noise + signal) is decomposed by wavelet. The denoised phase and amplitude are illustrated
in Fig. 6(b) and Fig. 6(d).

4.1.2 Motion Detection and Segmentation. To effectively extract the walking pattern features from the phase
and amplitude measurements, RF-Identity has to perform motion detection and segmentation first. It is crucial
to avoid introducing extra noise or losing useful information in the segmentation process [61] to ensure the
identification accuracy in the following steps. To achieve this objective, we present an energy-based sliding
window segmentation method based on the fact that the variations of phase and amplitude readings are much
larger when a user enters the sensing area. We calculate the energy 𝐸 as follows:

𝐸𝑝 (𝑡) =
𝐿∑
𝑙=1

𝜙2 (𝑡 + 𝑙) (2)

𝐸𝑎 (𝑡) =
𝐿∑
𝑙=1

𝐴2 (𝑡 + 𝑙) (3)

where 𝜙 (𝑡) and 𝐴 (𝑡) denote the phase reading and amplitude reading at time 𝑡 , 𝐿 denotes the length of the
sliding window, 𝑙 is the sample index. To demonstrate the effectiveness of the method, we compare it with the
variance-based moving window method. Fig. 7 shows the result for the same phase stream. It is evident that the
energy-based method can more accurately detect the start and end points of walking. Thus, the energy-based
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Fig. 8. The hybrid deep learning framework for dynamic user feature extraction.

method can capture the entire walking through process. In contrast, the variance-based method only detects the
moment when the subject blocks the LoS path. To determine the walking interval, we incorporate both phase
readings and amplitude readings to segment walking period based on Equation (2) and (3). The final start and
end indexes are calculated as the average start and end index values detected from phase and amplitude streams.

4.2 Dynamic User Feature Extraction
In this subsection, our goal is to extract reliable features for dynamic person identification. Since the same subject
cannot keep multiple walking events identical in reality, the captured signal variations are not the same in
different rounds. To deal with the above problem, RF-Identity develops a hybrid deep learning neural network to
extract walking pattern features and body shape features for identification. The workflows are shown in Fig. 8.

4.2.1 Walking Pattern Feature Extraction. To extract the walking pattern features, the first problem encountered
is how to effectively incorporate the readings from spatially deployed tags. To tackle this problem, we propose a
weight-based multi-channel network to automatically assign weights for each tag and then incorporate readings
from them to extract the walking pattern features. Specifically, we first design an attention block that can
automatically learn to focus more attention on those tags whose readings are more sensitive to user’s walking.
Let 𝑋𝑝 and 𝑋𝑟 respectively denote the phase matrix and amplitude matrix with a size of 𝐾 ×𝑀 , where 𝐾 is the
number of tags and𝑀 is the length of the phase or amplitude reading stream.1 We take the phase stream as an
example and the weight𝑤𝑘𝑝 for the 𝑘-𝑡ℎ tag is computed by:

𝑤𝑘𝑝 =

exp
(
𝑒𝑘𝑝

)
𝐾∑
𝑗=1

exp
(
𝑒
𝑗
𝑝

) (4)

and 𝑒𝑘𝑝 is defined as:

𝑒𝑘𝑝 = 𝑓

(
𝑔𝑘𝑝 , 𝑋

𝑘
𝑝

)
(5)

1We perform a data interpolation operation to make the lengths of phase/amplitude readings from different tags the same.
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where 𝑓 is the three-fully-connected layers, and 𝑔𝑘𝑝 is the weight vector of the hidden layers. We then perform a
matrix multiplication between 𝑋𝑝 and𝑊𝑝 to obtain the weighted phase matrix 𝑍𝑝 as follows:

𝑍𝑝 = 𝑋𝑝 ⊗𝑊𝑝 (6)

where𝑊𝑝 =

(
𝑤1
𝑝 ,𝑤

2
𝑝 · · · ,𝑤𝐾𝑝

)𝑇
, and 𝑇 is the transpose operation. In the same way, we can obtain the weighted

amplitude matrix 𝑍𝑎 . With this attention mechanism, RF-Identity can speed up the network to extract features
effectively. To fully combine the phase and amplitude information, we perform a concatenation operation as
follows:

𝐶 = 𝑍𝑝 ⊕ 𝑍𝑎 (7)
We then put 𝐶 into a ResNet module to acquire distinctive features from phase and amplitude information. The
reason for selecting the residual block is that it comprises the identity shortcut connections, which keeps all
information passing through freely in Fig. 8. Specifically, the shortcut connections can be written as:

𝑉 = 𝐻 (𝐶,𝑤𝐶 ) +𝐶 (8)

where 𝐻 (𝐶,𝑤𝐶 ) is a function to learn the residual mapping, 𝑤𝐶 denotes the parameter of each layer, 𝐶 is the
input vector and and 𝑉 is the output vector. Then an average pooling layer and a flatten layer are employed to
output the extracted walking pattern features 𝑉𝑤𝑎𝑙𝑘𝑖𝑛𝑔. To visualize the learned features, we use t-SNE [6] to
project them into a two-dimensional feature space. Fig. 9 depicts the features of 15 walking human subjects. It
shows that different subjects have different feature distributions, which can be used to identify subjects. However,
the feature distributions of some users have overlapped regions, leading to user identification errors. We need to
derive more features to improve the accuracy of person identification.

4.2.2 Body Shape Feature Extraction. We design a body shape estimation module and combine the extracted
features togetehr with the walking pattern features for user identification. The basic idea is to utilize amplitude
attenuation features collected from spatially deployed RFID tags. Instead of using the absolute amplitude values
𝑋𝐴𝑛

which can be affected by hardware noise, we use the amplitude change �̃�𝐴𝑛
before and after the human

subject appears to remove the common hardware noise:

�̃�𝑘𝐴𝑛
=

���𝑋𝑘𝐴𝑛
− 𝑋𝑘𝐴𝑓 𝑟𝑒𝑒

��� (9)

where 𝑛 is the sample index, 𝑘 is the tag index, and 𝑋𝑘
𝐴𝑓 𝑟𝑒𝑒

denotes the average amplitude reading of the 𝑘-𝑡ℎ tag
when the sensing area is empty.

Next, we detail how to capture body shape information based on amplitude change �̃�𝐴𝑛
. Inspired by previous

work [44] which uses amplitude measurements to perform radio tomographic imaging (RTI) for localization,
RF-Identity employs amplitude change-based RTI method to obtain the body shape information. Note that
different from the previous work [44] which deploys many transceivers at each side of the area to generate
multiple pairs of transmitter-receiver around the target, RF-Identity only requires an RFID reader antenna at one
side and a few tags at the other side. It exploits only a few RF links to obtain the body reflected snapshot and
combine multiple snapshots across time to recover the body shape tomographic image. We collect amplitude
change stream �̃�𝑘

𝐴
for each tag and form the amplitude change matrix �̃�𝐴 as below:

�̃�𝐴 =


�̃� 1
𝐴1

�̃� 1
𝐴2

· · · �̃� 1
𝐴𝑀

�̃� 2
𝐴1

�̃� 2
𝐴2

· · · �̃� 2
𝐴𝑀

...
...

. . .
...

�̃�𝐾
𝐴1

�̃�𝐾
𝐴2

· · · �̃�𝐾
𝐴𝑀


(10)
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Fig. 9. The t-SNE visualization of walk-
ing pattern features for 15 walking sub-
jects.
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Fig. 11. The t-SNE visualization of com-
bined features for 15 walking subjects.

Then, based on a linear relationship between the amplitude change and the pixel value, we have:

�̃�𝐴 =𝑊𝐹 + 𝑁 (11)

where𝑊 is a transformed weight matrix with a dimension of 𝐾 × 𝑀 . The weight of each pixel is generally
determined by the ellipsoid-basedmethod [23]. 𝐹 is the objective function that denotes the pixel value matrix of the
tomographic image and 𝑁 is the noise vector. To obtain 𝐹 , we transform Equation (11) into a least-squared-error
optimization problem:

arg min
𝐹

𝑊𝐹 − �̃�𝐴
2

2 (12)

Equation (12) is an ill-posed problem, which means a small amount of noise in �̃� is magnified [23]. To address
this problem, we add a regularization term and rewrite it as follows:𝑊𝐹 − �̃�𝐴

2 − 𝛽 ∥𝐼𝐹 ∥2 (13)

where 𝐼 is an identity matrix and 𝛽 is a regularization parameter. We can now obtain the explicit solution 𝐹 based
on [43] as below:

𝐹 =

(
𝑊𝑇𝑊 + 𝛽𝐼

)−1
𝑊𝑇 �̃�𝐴 (14)

In this paper, the regularization parameter 𝛽 is an empirical value of 55.
Fig. 10 shows the constructed tomographic image when a subject with a 1.68 m height walks through the

sensing area. We observe that the constructed image is able to capture the body shape information. The warmer
the pixel color, the larger the value is. The intuition is that when human body blocks the radio links, it has
different impacts on different tags. To further remove the scattered points in the red circles in Fig. 10 to obtain
more accurate body shape information, we leverage an encoder block to process the constructed tomographic
image as follows:

𝑍𝐹 = 𝐸𝑛𝑐𝑜𝑑𝑒𝑟

(
𝐹,𝑤𝐹

)
(15)

where 𝐸𝑛𝑐𝑜𝑑𝑒𝑟 consists of three convolution layers and𝑤𝐹 denotes the parameters to be learned. Then, 𝑍𝐹 is put
into an average pooling layer and a flatten layer to extract the learned body shape information 𝑍𝑏𝑜𝑑𝑦 .

4.2.3 Feature Fusion. Based on the extracted walking pattern features 𝑉𝑤𝑎𝑙𝑘𝑖𝑛𝑔 and body shape features 𝑍𝑏𝑜𝑑𝑦 ,
we perform feature fusion by concatenating them as follows:

𝑈 = 𝑉𝑤𝑎𝑙𝑘𝑖𝑛𝑔 ⊕ 𝑍𝑏𝑜𝑑𝑦 (16)
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To predict the labels of test subjects, we use two fully connected layers to map the feature representation 𝑈
into a new space 𝑆 . Then, we use a softmax layer to calculate the probability 𝑦. Finally, RF-Identity uses a loss
function module to compute the similarity between the predicted label 𝑦𝑖 and the ground-truth 𝑦𝑖 . Here, we use a
cross-entropy to calculate the loss 𝐿1 as:

𝐿1 = − 1
𝑚𝑏

𝑚𝑏∑
𝑖=1

𝑦𝑖 log (𝑦𝑖 ) + 𝜅O (17)

where𝑚𝑏 is the size of the batch, O is a regularizer to avoid overfitting and 𝜅 is the hyper-parameter.
We train the proposed model on the training set by iteratively using the backward propagation to minimize

the cross-entropy. By applying the proposed method, we visualize the learned features for 15 subjects with
t-SNE in Fig. 11. We can observe that different subjects have more distinct feature distributions compared with
those in Fig. 9. This result demonstrates that the hybrid deep learning model can effectively acquire features for
classification by combining the walking patterns and body shape information.

4.3 Data Augmentation
In this part, we present how to generate synthesized training samples to reduce the data collection cost. We
design a data augmentation scheme that includes three signal transformations of the original data. That is to say,
when we input a data 𝑋 , the outputs are three variants of 𝑋 . Specifically, the three signal transformations are as
follows:

• Jitter: Jitter is a method to add random noise to the original data without changing the length of 𝑋 . It can
imitate the noise caused by environment, software and hardware. Thus, the synthesized jitter data can
enhance the capability of the model against different categories of noise.

• Time-Warped: Time-Warped transformation changes the temporal scale of the received data by varying
the time intervals of the original data samples. The received signal stream may get stretched or compressed
to represent different walking velocities.

• Different numbers of readings for each tag: When there are multiple tags, the numbers of readings
collected from each tag are not the same in a same interval. Therefore, to imitate this phenomenon, we
also randomly generate different numbers of readings for each tag. After that, we perform interpolation to
make the the number of readings the same for all the tags.

Based on the proposed data augmentation scheme, we achieve the following benefits: 1) we significantly reduce
the amount of human effort in collecting training data; 2) The synthesized data generated by three transformations
greatly improves the model’s robustness.

4.4 Accommodating New Users
To reduce the cost of re-collecting data for new users, we employ a transfer learning method to speed up the
convergence of the model parameters. The observation is that some of the previously trained parameters of the
model are still valid for the new subjects. So we can transfer learned knowledge from previously trained users
(source domain) to new users (target domain).

Fig. 12 illustrates how this process works in detail. The transfer learning scheme includes two parts: the frozen
module, and the updating module. The frozen module is to fix the pre-trained parameters of the hybrid deep
learning model, thus substantially reducing the time and human labor cost for data collection. The updating
module updates the model weights quickly by learning the information from the target domain with two
fully-connected layers.

Note that the dimension of the updating module’s last layer relates to the number of predicted labels. Suppose
the parameters are trained for 𝑛 subjects in advance, once a new subject joins in, we need to change the last
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Fig. 12. The transfer learning model for new users.
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Fig. 13. The phase and amplitude profiles of different subjects.
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Fig. 14. The phase and amplitude profiles of one subject for
three repeated experiments.

layer’s dimension from 𝑛 to 𝑛 + 1 in the training phase and randomly initialize the parameters. Based on the
above steps, we can reduce the training effort for new users and still retain a good performance.

4.5 Static User Feature Extraction
In this subsection, we introduce how to extract features from a static user. The basic idea is to use spatially
deployed tags to capture the distinct effects on wireless signals induced by users of different biometrics (e.g.,
height). We conduct a benchmark experiment with three subjects standing still at a fixed position.2 The phase
and amplitude readings are plotted in Fig. 13. We can observe that different users exhibit different phase and
amplitude profiles constructed with data collected from spatially deployed tags. Moreover, we let one of the
subjects stand still at a fixed position, and repeatedly collect readings three times within a time interval of five
minutes. The phase and amplitude profiles are shown in Fig. 14. We can see that the readings of some tags are
stable while others are not.
To overcome the above issue, we introduce a weight-based distance method to help differentiate profiles of

different users. Specifically, we introduce two weights 𝛼 and 𝜂 to estimate the profile distance for each subject,
where 𝛼 represents the ability to identify different users, and 𝜂 stands for the similarity between the training and
2In the sensing area, 12 tags and a directional antenna are placed at two sides of the door. The detailed deployment is shown in Fig. 16.
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Table 1. Eight statistical features

ID Statistical feature ID Statistical feature
1 Standard deviation 2 Mean absolute deviation
3 Median absolute deviation 4 Interquartile range
5 Root mean square 6 Entropy
7 Skewness 8 Kurtosis

testing profiles. The two weights are respectively described as follows:

𝛼𝑘 =

∑
𝑖

∑
ℎ≠𝑏

𝑑𝑖𝑠𝑡

(
𝑃
𝑖,ℎ

𝑘,𝑆
, 𝑃
𝑖,𝑏

𝑘,𝑆

)
∑
𝑖≠𝑗

∑
ℎ,𝑏

𝑑𝑖𝑠𝑡

(
𝑃
𝑖,ℎ

𝑘,𝑆
, 𝑃

𝑗,𝑏

𝑘,𝑆

) (18)

𝜂𝑘 =

var
(
𝑑𝑖𝑠𝑡

(
𝑃𝑘,𝑇 , 𝑃

𝑖,ℎ

𝑘,𝑆

))
∑𝐾
𝑘=1 var

(
𝑑𝑖𝑠𝑡

(
𝑃𝑘,𝑇 , 𝑃

𝑖,ℎ

𝑘,𝑆

)) (19)

where 𝑑𝑖𝑠𝑡 (, ) is the Euclidean distance, 𝑃𝑖,ℎ
𝑘,𝑆

is the phase value of the 𝑘-𝑡ℎ tag in the ℎ-𝑡ℎ recorded profile for
person 𝑖 and 𝑃𝑘,𝑇 is the 𝑘-𝑡ℎ phase value of the testing profile. When 𝛼 and 𝜂 are smaller values, the 𝑘-𝑡ℎ tag has
a stronger distinguishing capability and is more robust. Thus, we formulate the phase profile distance as follows:

𝐸𝐷 =

√√√
𝐾∑
𝑘=1

𝛼𝑘 · 𝜂𝑘 · 𝑑𝑖𝑠𝑡
(
𝑃𝑘,𝑇 , 𝑃𝑘,𝑆

)
(20)

Similarly, we can obtain the amplitude profile distance. Moreover, RF-Identity calculates another eight statistic
features (listed in Table 1) of phase and amplitude profiles, respectively. Then we incorporate them with the
profile distance features as the final static user features. Fig. 15 illustrates the merged features of 15 subjects,
which have excellent discrimination capability.

4.6 Person Identification and Spoof Detection
In this section, we introduce how to perform person identification and spoof detection. Person identification is to
identify users registered in the training dataset, and spoof detection refers to detecting illegal users. Specifically, RF-
Identity feeds the extracted dynamic/static user features into a SVM [31] with a radial basis function (RBF) kernel
function to identify dynamic/static users. To perform spoof detection, RF-Identity leverages SVDD algorithm [26]
to find a minimum hypersphere. The hypersphere contains pre-collected legal users’ data and excludes illegal
users’ data. When a test user is in the hypersphere, RF-Identity determines that the user is legitimate and illegal
otherwise.

5 IMPLEMENTATION
Hardware implementation: The system setup is shown in Fig. 16. It contains an Impinj Speedway R420 reader
with one directional antenna (9 dBi gain; 70◦ elevation and azimuth beam width). The reader operates at a
frequency of 924.375 MHz and 12 ALN-9640 tags are employed to form a tag array. The reader has a sampling
rate of 140 samples per second. The horizontal distance between the antenna and the middle point of the tag
array is 1.5 m. The height of the antenna is 1.2 m above the ground. Note that the spacings between adjacent tags
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Fig. 15. The t-SNE visualization of
learned features for 15 static subjects.
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are not uniform. The first four tags are deployed at a height ranging from 0.3 m to 1.5 m at a step size of 0.4 m.
The rest eight tags are placed at a height ranging from 1.55 m to 1.9 m at a step size of 0.05 m.

Backend implementation: The R420 reader collection program is implemented with 𝐶# code on a Lenovo
Thinkpad laptop with an Intel i7-6700HQ CPU and 32GB memory. The software is compatible with the Low-level
Reader Protocol (LLRP) Toolkit to output phase and amplitude readings. The proposed deep learning algorithm is
implemented in Python, based on Keras framework with Tensorflow backend. It is trained at a remote server
with an Intel Xeon(R) CPU E5-2620 v3, a 64GB memory and a NVIDIA TITAN RTX GPU.

Data collection: In our default experiments, we recruit 50 volunteers (28 males and 22 females). As shown in
Fig. 17, different subjects have different heights and weights. To perform person identification, we conduct two
rounds of experiments. In the first round, we ask each volunteer to walk across the sensing area3 for 80 times,
and collect RFID measurements throughout the process. In the second round, each volunteer stands at a fixed
location 10 cm before the LoS for a period of 5 seconds for 50 times and we collect the RFID measurements. We
refer to the above collected dynamic and static data as dataset 1. We use a table to record the identity of the user
for each experiment and label all the data manually. For all the experiments, we ensure that only one volunteer is
in the sensing area and no other person moves around.

6 PERFORMANCE

6.1 Overall Performance
6.1.1 Person identification accuracy. To evaluate the performance of dynamic person identification, we employ
10-fold cross-validation to split collected dynamic samples of dataset 1. In other words, in each fold, we select
1/10× 80 = 8 samples of each user for testing and the remaining (1− 1/10) × 80 = 72 samples for training. Fig. 18
presents the confusionmatrix for 50 subjects. RF-Identity achieves an average accuracy of 94.2% in dynamic person
identification. Some subjects can be identified at 100% accuracy, which demonstrates the effectiveness of the
proposed method. To evaluate the performance of identifying static users, we use 80% of the static measurements
of dataset 1 for training and 20% for testing. The results are shown in Fig. 19 and RF-Identity performs well for
static user identification with an average accuracy of 95.9%.

6.1.2 Spoof detection accuracy. We now evaluate the spoof detection performance. Specifically, we choose ℎ
subjects as legitimate users and the remaining 50 − ℎ subjects as illegal spoofers, where ℎ varies from 5 to 45 at a
step size of 5. RF-Identity employs the SVDD classifier to detect spoofers. The results are presented in Fig. 20.
We can see that the spoof detection accuracy goes up as the number of legitimate users increases in both cases.
3The default experiment scenario is at the entrance of the lab.
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Fig. 18. The confusion matrix in dynamic case.
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Fig. 19. The confusion matrix in static case.
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Fig. 22. The performance of feature fu-
sion in static case.

From the results, we can conclude that RF-Identity can effectively recognize illegal users as long as the size of the
training data is not too small.

6.1.3 Verification of the feature fusion. To assess the performance of the feature extraction model for dynamic
and static users, we conduct a set of benchmark experiments by changing the model inputs with dataset 1.
Specifically, in the dynamic case, we use four different inputs: (1) phase-based walking pattern feature (P); (2)
amplitude-based walking pattern feature (A); (3) the combination of (1) and (2) (A-P); and (4) the combination of
(3) and body shape feature (A-P-B). Fig. 21 plots the identification accuracy under different inputs. The results
depict that phase-based performance is better than amplitude-based, which implies that phase readings contain
more fine-grained information. And the fusion of phase and amplitude achieves a better performance. By further
including the body shape features, the A-P-B combination achieves the best performance. Thus, the proposed
hybrid deep learning model can efficiently combine the walking pattern and body shape features to achieve a
better performance. In the static user case, we obtain similar results in Fig. 22. The combination of phase and
amplitude features can achieve a higher identification accuracy.

6.1.4 Verification of the data augmentation method. We analyze the person identification performance with and
without the data augmentation (DA) method. Specifically, we change the number of dynamic training samples
from 3 to 24 for each subject. Fig. 23 depicts the average identification accuracy. The accuracy improves when the
number of training sample increases. It increases from 49.5% to 79.8% as the number of training sample increases
from 3 to 24 without augmentation (w/o DA), and from 68.2% to 94.1% with augmentation (w/ DA). For the same
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9 10 11 12 13 14
The Number of Training Users

100

120

140

160

180

200

T
ra

in
in

g 
T

im
e 

(s
)

w/o transfer learning
w transfer learning

(a) The training time of hybrid deep learn-
ing module.

9 10 11 12 13 14
The Number of Training Users

90

92

94

96

98

100

 Id
en

tif
ic

at
io

n 
A

cc
ur

ac
y(

%
)

w/o transfer learning
w transfer learning

(b) The accuracy of hybrid deep learning mod-
ule.

Fig. 24. The performance of transfer learning scheme.

number of training sample, the accuracy increases a lot with augmentation (w/ DA) when compared to without
augmentation (w/o DA). For instance, with 15 training samples, RF-Identity can achieve an average accuracy of
92.5% w DA and 66.8% w/o DA. In conclusion, the data augmentation scheme can effectively improve system
performance by generating more training data. Data augmentation also reduces the amount of data collection
effort. To balance the data collection overhead and accuracy, we suggest to collect 15 training samples to achieve
a reasonably good performance.

6.1.5 Verification of the transfer learning method. To verify the effectiveness of the transfer learning method, we
initialize the hybrid deep learning model by training data of 9 subjects and freeze the trained parameters. Then
we apply data collected from various numbers of training subjects (9 to 14) to evaluate the system performance
with and without applying the transfer learning method. The results are shown in Fig. 24. Fig. 24(a) presents
the training time of the hybrid deep learning model. It manifests that the transfer learning method remarkably
saves the training time. Fig. 24(b) exhibits the average identification accuracy for different numbers of users. The
accuracy with transfer learning is always above 96% and is comparable to that achieved without transfer learning.
Thus, the transfer learning method can considerably reduce the training cost and retain a higher identification
accuracy.

6.2 Diverse factors on RF-Identity
In this subsection, we investigate the factors affecting the system performances.

6.2.1 Effect of the number of users to be differentiated. We change the number of tested users from 10 to 50
to evaluate the impact on identification accuracy. The performance is shown in Fig. 25. We can see that the
identification accuracy decreases with more users to be differentiated. In particular, when there are only 10 targets
to be differentiated, RF-Identity achieves an identification accuracy of 98.7% and 99.6% for dynamic and static
cases, respectively. When there are 50 targets, the accuracy slightly decreases to 94.2% and 95.9% respectively
for dynamic and static cases. This result is expected because with more targets to be differentiated, the average
difference between targets’ features gets smaller.

6.2.2 Effect of different clothes. In practical scenarios, the same subject may wear different clothes in different
days. To explore the effects of different clothes, we ask 10 volunteers to perform three rounds of experiments
wearing three different clothes. In each round, we ask the volunteers to wear the same clothe (same brand and
model of different sizes), and walk naturally for 30 times and stand for a period of 5 seconds for 30 times. Note
that these clothes are different from those used in the training phase. Then, we use these collected samples to
evaluate the model trained by dataset 1. Fig. 26 shows the identification performance. The accuracy slightly
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Table 2. Different walking events

ID Walking event ID Walking event
a slow walking b fast walking
c trajectory 1 d trajectory 2
e make phone call f drink water
g carry a laptop h carry a backpack

decreases from 98.3% to 95.6% in the dynamic case and 99.4% to 92.7% in the static case. The result suggests that
the system is more robust in the dynamic case than the static case when the subject wears different clothes. We
believe the reason is that the dynamic user feature mainly depends on the walking pattern. In contrast, the static
user feature is more related to the RF attenuation induced by the body, which is more affected by the clothe.
Overall, RF-Identity still achieves a high accuracy over 92% with different clothes in both dynamic and static
cases.

6.2.3 Effect of different walking events. We evaluate the effects of different walking events by letting the same
10 subjects walk through the sensing area at different velocities, following different trajectories and carrying
different objects. For each event, the subject is asked to walk through the entrance for 30 times. Table 2 describes
the detailed walking events. As shown in Fig. 27, except for the fast walking which achieves a decreased accuracy
of 87.9%, RF-Identity achieves an average accuracy of 95.7% in other events. These results indicate that the
proposed model can effectively extract the dynamic user features and is robust against varying walking events.

6.2.4 Effect of different environments. We estimate the system performance when the system is deployed in two
new environments: a corridor entrance and an office entrance. Note that the experiment setups are kept the
same as that in the default lab environment. In the new environment, we ask each volunteer to walk naturally
across the sensing area for 30 times and stand still for a period of 5 seconds for 30 times. Then, we evaluate the
identification accuracy using the model trained with dataset 1. Fig. 28 shows the identification performance in
the two new environments. We also include the identification performance in the default lab environment for
comparison. The performance in the corridor and office environments decreases compared to performance in the
default lab environment. This is because the extracted features are environment-dependent. Therefore, using the
model trained in one environment to work with data collected in another environment can cause performance
degradation.

6.2.5 Effect of the number of tags. We now explore the impact of tag number on RF-Identity’s performance.
For each tag deployment, we employ 15 volunteers to walk naturally across the sensing area for 80 times and
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Fig. 28. The performance with different
environments.
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Fig. 29. The performance with different
number of tags.
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Fig. 30. The performance with different
horizontal distances between the reader
antenna and tag-array.

Table 3. Comparison with different user identification systems.

System Signal Users Accuracy
WiFi-ID Wi-Fi 2-6 93%-77%
Wiwho Wi-Fi 2-6 92%-80%
WiFiU Wi-Fi 50 79.28%

RF-Identity RFID 50 94.21%

stand still for 50 times. Then, we use the data collected to re-train the model and evaluate the performance with
the re-trained model. Fig. 29 shows that the identification accuracy increases with the increase of tag number.
The reason is that more tags can provide richer spatial information of a user. Thus the system can obtain more
fine-grained behavioral and physical features for person identification. In this paper, we adopt 12 tags based on
our empirical study.

6.2.6 Effect of the horizontal distance between the reader antenna and tag array. In practice, the width of an
entrance varies significantly[1]. Because we deploy the RFID reader at one side of the entrance and the tags at
the other side, the entrance width determines the distance between the RFID reader and tags. We evaluate the
impact of the entrance width on RF-Identity’s performance. We vary the horizontal distance between the reader
and tags from 0.8 m to 2 m at a step size of 0.4 m. We ask 15 volunteers to walk naturally across the sensing area
for 80 times and stand still for 50 times. Then, we use the collected data to re-train the model and evaluate the
performance with the re-trained model. Fig. 30 shows that the reader-tag distance change does not affect the
accuracy much. RF-Identity achieves a slightly higher accuracy when the reader-tag distance is larger. We believe
this is because the static signal strength decreases more than the dynamic signal when the tag-reader distance
increases [48]. The dynamic signal is usually much weaker than the static signal due to reflection. Thus, when
the two signals both decrease but the static signal decreases more, the signal strength difference between the two
signals becomes smaller. Therefore, the variation of the dynamic signal can now cause a larger variation on the
composite signal.

6.2.7 Comparison with prior works. We compare RF-Identity with three state-of-the-art Wi-Fi-based user
identification systems,Wiwho[52],WiFiU[40] andWiFi-ID[54] in Table 3.We can see that RF-Identity outperforms
these approaches in terms of accuracy. Furthermore, the existing systems cannot identify static human targets. In
addition, we implement one system above (WiFiU) using one Wi-Fi transceiver pair. We use a TP-link WDR7500
Wi-Fi router that supports IEEE 802.11n protocol as the transmitter and a mini-PC with an Intel 5300 wireless card
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Fig. 31. Comparison to prior work.

as the receiver to collect Wi-Fi CSI readings. The wireless router works at 5 GHz band with a channel bandwidth
of 20 MHz. The transmitter and receiver are placed with a distance of 1.5 m in-between at the same height of 1.2
m, which is the same as the RFID deployment. The packet transmission rate is 1000 packets per second. We ask
50 subjects to naturally walk through the sensing area for 30 times. The comparison results are shown in Fig. 31.
We can see that RF-Identity outperforms WiFiU and the amount of improvement increases with a larger number
of tested users.

7 DISCUSSION
We discuss the limitations and some interesting observations in this section.

1)Multi-user scenarios.Multi-user sensing is a well-known challenge in RF sensing because the reflection signals
from multiple targets get mixed at the receiver, interfering with each other. The current version of RF-Identity
works well with a single human target. When there are multiple targets, the system still works if the targets are
far away from each other. If multiple targets are close to each other, it is challenging for our system to work. We
believe some recent progress in multi-dimensional signal processing [47] can help to achieve multi-user sensing.
It is a challenging yet interesting research direction to deal with multiple targets in our future work.
2)Environment diversity. To achieve highly accurate person identification, RF-Identity requires the test envi-

ronment to be the same as training environment because the model trained is environment-dependent. Besides,
RF-Identity requires the user to stay at a fixed location for static identification since the phase and amplitude
profiles will change when the user location changes. We believe more advanced deep learning methods such as
transfer learning and adversarial learning [3, 53] can be employed to mitigate these limitations.
3) Tag deployment. To balance the system’s accuracy and latency, in RF-Identity, the tags are deployed non-

uniformly in the vertical direction. The reason is that the tag reading rate decreases when the number of deployed
tag increases. Therefore, we deploy more tags on the top to obtain fine-grained human body shape information
(e.g., height), and deploy less tags at the bottom to extract the gait information. For future design, we believe
2-dimensional tag array can capture even richer information of the target. For example, the current linear tag
array enables us to obtain the height information of the target. With a second dimension of tags, we are able to
obtain the thickness of the target. Another interesting direction worth exploring is employing the coupling effect
among tags to further enhance the sensing performance. One recent work [46] successfully employed this “bad"
coupling effect to improve the sensing performance. We discovered in the paper that with more tags deployed,
we can obtain more accurate human body shape information. However, we observe that when we deploy more
tags, the spacing between tags becomes smaller and eventually coupling effect is induced.
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8 RELATED WORK
In this section, we review the related literature in person identification and other RFID-based sensing work.

8.1 Camera-based person identification
Camera-based systems [25, 59, 60] are widely used in person identification. Although a high accuracy can be
achieved, they require good lighting conditions that can raise privacy concerns. Besides, these methods can be
vulnerable to replay attacks [33]. In contrast, RF-Identity is independent of lighting conditions and does not raise
privacy concerns.

8.2 Sensor based person identification
Many systems utilize sensors, such as fingerprint sensor, vibration sensor, and microphone sensor for person
identification. A recent work [10] collects users’ fingerprints to verify identity but can be fooled by a thin film.
Zhu et al. [50] leverages iris scan sensors to authenticate user identity but the hardware cost is high. FootprintID
[22] performs robust indoor pedestrian identification by using vibration sensors to detect vibrations induced
by footsteps. However, it requires many sensors to cover the sensing area. BreathLive [12] performs person
authentication using microphone sensors to find the correlation between sounds and chest motion, which requires
users to carry devices. Unlike the above systems, RF-Identity is a non-intrusive system which does not require
users to carry any device and is implemented on relatively cheap commercial hardware.

8.3 RF-based person identification
Various RF technologies including Radar [27, 34], FMCW [2, 57, 58], Wi-Fi [16, 20, 28, 30, 53] and RFID [11, 56] are
utilized to perform person identification. FormaTrack[15] exploits a radar to capture body shape as a biometric for
person identification. RF-Capture[2] uses a dedicated FMCW to capture the human figure behind the wall. These
systems achieve accurate identification, yet still require dedicated and expensive devices. Gait-based approaches
[40, 52, 54] require the subject to keep the same walking pattern for high accuracy, and the performance decreases
as the number of test users increases. RF-Mehndi [56] leverages the tag coupling effect for person identification.
It requires the user to carry a dedicated card with a well-designed tag array printed on it. Au-Id [11] proposes
a deep learning model to extract knocking features, which requires a massive amount of training data. Some
previous works [9, 13, 36] can identify static users but require a large bandwidth to obtain richer features. Unlike
existing schemes, RF-Identity uses commodity hardware without a need of large bandwidth. RF-Identity is able
to identify both dynamic and static persons in a contact-free manner.

8.4 RFID-based sensing
RFID technology has been widely applied in many sensing applications, such as localization [37, 39], activity
and gesture recognition [5, 29, 35], object interaction detection [17, 55] and target material identification [38].
FaHo [49] uses radio frequency holograms to locate RFID tags. Grfid [61] performs accurate and robust gesture
recognition by developing a weighted DTWmethod. EUIGR[51] employs adversarial learning to achieve real-time
gesture recognition. Rio [24] and Tagtag [45] utilize tag coupling effect to sense touch gesture and target material,
respectively. Different from the state-of-the-arts, RF-Identity fuses phase and amplitude information to perform
dynamic/static person identification.

9 CONCLUSION
This paper introduces a person identification system RF-Identity which is capable of identifying not just dynamic
users but also static users using commodity RFID hardware. In the dynamic case, RF-Identity proposes a hybrid
deep learning framework to integrate the behavioral features and physiological features for person identification.
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In the static case, RF-Identity utilizes tag diversity in spatial domain to construct phase and amplitude profiles to
distinguish static users. Extensive experiments demonstrate RF-Identity can achieve accurate and robust person
identifications in a non-intrusive way.
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