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Contactless RF-based sensing techniques are emerging as a viable means for building gesture recognition systems. While
promising, existing RF-based gesture solutions have poor generalization ability when targeting new users, environments
or device deployment. They also often require multiple pairs of transceivers and a large number of training samples for
each target domain. These limitations either lead to poor cross-domain performance or incur a huge labor cost, hindering
their practical adoption. This paper introduces Wi-Learner, a novel RF-based sensing solution that relies on just one pair of
transceivers but can deliver accurate cross-domain gesture recognition using just one data sample per gesture for a target
user, environment or device setup. Wi-Learner achieves this by first capturing the gesture-induced Doppler frequency shift
(DFS) from noisy measurements using carefully designed signal processing schemes. It then employs a convolution neural
network-based autoencoder to extract the low-dimensional features to be fed into a downstream model for gesture recognition.
Wi-Learner introduces a novel meta-learner to “teach” the neural network to learn effectively from a small set of data points,
allowing the base model to quickly adapt to a new domain using just one training sample. By so doing, we reduce the overhead
of training data collection and allow a sensing system to adapt to the change of the deployed environment. We evaluate
Wi-Learner by applying it to gesture recognition using the Widar 3.0 dataset. Extensive experiments demonstrate Wi-Learner
is highly efficient and has a good generalization ability, by delivering an accuracy of 93.2% and 74.2% − 94.9% for in-domain
and cross-domain using just one sample per gesture, respectively.
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1 INTRODUCTION
Gesture recognition underpins many human-computer interaction applications. With the capability of gesture
recognition, one can interact with today’s digital devices in a contact-free manner. Wireless signals like Wi-
Fi [26, 41, 47], RFID [43, 62], acoustic [22, 52] and millimeter radar [34, 46] are emerging as a powerful modality
for building wireless sensing systems for gesture recognition. Compared with traditional solutions that build
around wearable devices [12, 37], and smartphones [30], wireless sensing has the advantage of not requiring
instrumenting the users (i.e., device-free), and being less privacy intrusive than other infrastructure-based
solutions such as video monitoring [11, 48]. Among these signals, a Wi-Fi-based solution is particularly attractive
due to its low cost and the ubiquitous Wi-Fi devices around us.

There is a growing interest in developing Wi-Fi-based gesture recognition systems using machine learning to
learn a decision model from training samples [3, 14, 18, 25, 26]. While giving good results in specific environments,
the efficacy of existing learning-based approaches depends on a range of domain factors, like the multipath of
deployed environments, the user characteristics, the user’s location and orientation, and the Wi-Fi transceiver
setups. Experience and studies show that even a small change in the domain factor [56], such as moving or adding
furniture, or changing the position and distance of wireless devices or the location where the activity is performed,
can significantly degrade the performance of a Wi-Fi-based gesture recognition solution. Fundamentally, this
is because domain factor change can violate a core assumption of machine learning - the training and test
time examples are identically and independently drawn from the same distribution (i.i.d.). The change in the
domain factors can change multipath, completely changing the wireless signal pattern, causing the incoming test
distribution to diverge from the model training samples’, leading to poor recognition accuracy.

One way to improve the robustness of a learning-based sensing system is to make sure the model training sam-
ples cover all possible target domains. Unfortunately, doing so is infeasible due to the extensive user involvement
for data acquisition. Some recent works utilize adversarial learning [4, 38] or transfer learning [24] to improve
the generalization ability of the sensing model. These approaches, while important, are unlikely to cover all
possible domain factors seen during deployment time. Another possibility is to find features that are robust to
the environment by using multiple transceivers [10, 61]. However, it is very hard, if not impossible, to find such
universal features across various domains with different device deployments, user characteristics and gestures.
These drawbacks call for a new approach for constructing learning-based gesture recognition systems.

We present Wi-Learner, a cross-domain learning-based gesture recognition system. Wi-Learner has the benefit
of being low-cost because it relies on just one Wi-Fi transceiver pair. It can adapt to a new domain by using
just one gesture sample for each target domain, seen at test time. This one-shot learning capability significantly
reduces the data acquisition overhead. While being low-cost and low-overhead, we show that Wi-Learner is
highly accurate and can quickly adapt to changes of environments, users, location and orientation of the user,
and device deployments. The cross-domain learning feature of Wi-Learner allows one to build a robust gesture
recognition system with a small set of data samples. As illustrated in Fig. 1, such a capability allows the sensing
system to adapt to the change of user identity, environment, as well as the location, orientation, and deployment
of the Wi-Fi transceiver.

Realizing our goal requires overcoming several technical challenges. Wi-Learner realizes gesture recognition
using the Doppler frequency shift (DFS) information. Prior work has shown that different performed gestures
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Fig. 1. Example application ofWi-Learner,Where onemale and one female perform the same gesture in different environments
(e.g., home, lab), and they stand at different locations and orientations relative to different transceivers’ deployments.

induce unique DFS change patterns and can be used to build an effective gesture recognition system [51]. The
DFS patterns can be observed in the DFS spectrograms extracted from the channel state information (CSI)
using commercial off-the-shelf Wi-Fi transceivers, making DFS suitable for Wi-Learner. Unfortunately, the CSI
measurements are inherently noise in real-life deployment. Such noise canmanifest in the CSI amplitude and phase
readings – both are essential for obtaining accurate DFS spectrograms. For example, prior studies show that the
CSI phase readings can vary from 0 to 2𝜋 across different wireless packets, and the CSI amplitude readings contain
much impulse noise [8]. Such a noise level can severely affect the accuracy of gesture recognition. Moreover,
indoor environments normally incur a heavy multipath effect. It causes excessive irrelevant interference exists in
the extracted DFS spectrograms. This issue is amplified on Wi-Learner because it has to rely on just one pair of
Wi-Fi transceivers. Furthermore, as the learning algorithm of Wi-Learner operates on minimal training samples
(one sample per gesture for each new domain), it must find ways to make best use of the available data samples
to maximize the information gain. Failing to do so will degrade the resulting performance and generalization
ability of Wi-Learner, discouraging wide-scale adoption.

We introduce a set of signal processing methods, model architectures and learning strategies to overcome the
aforementioned technical challenges. To minimize the noise in the CSI amplitude and phase readings, Wi-Learner
first employs a discrete wavelet transform (DWT) algorithm to denoise the CSI amplitude readings. Then, it
leverages the observation that the two antennas at the same receiver share identical phase offsets to cancel out
random phase offsets in the CSI phase readings. Finally, Wi-Learner applies a series of signal processing schemes
including weight-based conjugate multiplication, antenna selection and spectrogram enhancement to obtain the
cleaned DFS spectrograms.
To extract DFS change representation from the DFS spectrograms, Wi-Learner employs a lightweight au-

toencoder scheme. Our autoencoder builds on a convolution neural network architecture that is shown to be
effective in learning wireless signal representation [16]. Our key insight is to use an encoder-decoder strategy to
guide the network to focus on extracting gesture-induced features while discarding the irrelevant information in
the DFS spectrograms. Our model is trained to produce a latent representation to capture gesture-dependent
characteristics. To improve the noise-resistance of the autoencoder, we further introduce a Gaussian noise
generation module to mimic the signal measurement noise. Later in Section 6, we show that our autoencoder
scheme is highly effective in extracting useful representation from the CSI readings, which in turn allows one to
build an accurate downstream model for gesture recognition based on the extracted information.
To tackle the domain adaptation challenge with limited target samples, Wi-Learner employs a novel meta-

learner framework to “teach” our base sensing model to learn effectively from a few data points. To do so, we
first use the training dataset collected from a variety of domains to initialize the model. We then use a small
amount of data (one sample per gesture) collected from each new domain to fine-tune the model parameters. To
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Fig. 2. Multipaths caused by the human target movement

this end, Wi-Learner first designs a base model to extract deep gesture-dependent features from DFS change
representation. It then adopts a task generation scheme to generate different learning tasks to mimic domain
variations using the limited training dataset, where different tasks contain different domains’ gestures. Then,
Wi-Learner leverages these tasks to train the base model, guiding the neural network to focus on extracting
information that is most likely to improve the learning quality. By doing so, Wi-Learner enables fast domain
adaption with one-shot learning while retaining the desired performance with a good generalization ability.
We implement Wi-Learner on a pair of commodity Wi-Fi transceivers and evaluate the system performance

on a public dataset, Widar3.0 [61]. Experimental results demonstrate that Wi-Learner is highly efficient and has a
good generalization ability, by delivering an accuracy of 93.2% and 74.2%− 94.9% for in-domain and cross-domain
using just one sample per gesture, respectively. In addition, we utilize two other Wi-Fi datasets (SignFi [26] and
WiAR [13]) with different sensing tasks to demonstrate the generalizability of Wi-Learner.

Contribution. This work makes following technical contributions:

• We present a learning-based solution that relies on one pair of Wi-Fi transceivers and one-shot learning
but can deliver accurate and reliable cross-domain gesture recognition (Section 6).
• We introduce a lightweight autoencoder to derive useful Wi-Fi signal representation to support gesture
recognition (Sections 4.2).
• We show how a novel meta-learner can be developed to achieve fast domain adaptation with one sample
per gesture (Section 4.3).

2 BACKGROUND AND MOTIVATION
In this section, we first introduce the channel statement information (CSI) channel used for RF-based activity
recognition. Then, we depict the problem scope of this work. Finally, some preliminary experiments are conducted
to showcase the practical cross-domain issues in gesture recognition systems.

2.1 Modeling the CSI Channel
Typically, in an indoor environment, transmitted signals bounce off different objects and these reflected copies
are inter-wined at the receiver. As depicted in Fig. 2, the Wi-Fi signals not only travel along a direct path but
also multiple reflection paths (e.g., walls and the human target). Thus, the channel frequency response can be
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expressed as:

𝐻 (𝑓 , 𝑡) =
𝑁∑︁
𝑖=1

𝑎𝑖 (𝑓 , 𝑡) 𝑒−𝑗2𝜋 𝑓
𝑣𝑖 𝑡

𝑐 (1)

where 𝑓 and 𝑡 are the frequency and arrival time of subcarriers, 𝑁 is the number of paths, 𝑣𝑖 denotes the 𝑖𝑡ℎ
path’s length change velocity, and 𝑐 is the speed of light. Due to the propagation paths can be divided into static
paths and dynamic paths [51], we rewrite Equation (1) as:

𝐻 (𝑓 , 𝑡) = 𝐻𝑠 (𝑓 , 𝑡) + 𝐻𝑑 (𝑓 , 𝑡) = 𝐻𝑠 (𝑓 ) +
∑︁
𝑖∈𝑁𝑑

𝑎𝑖 (𝑓 , 𝑡) 𝑒−𝑗2𝜋 𝑓
𝑣𝑖 𝑡

𝑐 (2)

where 𝐻𝑠 (𝑓 , 𝑡) represents the sum of all static paths’ responses and 𝑁𝑑 denotes the number of dynamic paths.
Based on Equation (2), we can observe that once a human activity (e.g., performing gestures) occurs, the length
of dynamic paths will change, thereby introducing a Doppler frequency shift (𝑓 𝑣𝑖𝑡

𝑐
) to the 𝑖𝑡ℎ path signal. Please

note that the speed of reflection path length change is not the real velocity of the human target. Since different
gestures have different trajectories of hand components, which results in different target reflection path length
change patterns of Wi-Fi signals, we can employ the CSI measurements to derive the Doppler change patterns
induced by gestures and use them to infer different gestures [51].

2.2 Problem Scope
This paper aims to deliver accurate cross-domain gesture recognition using just one-shot per gesture in the target
domain. We here provide a general description of the problem terms we used as follows: 1) Domain factors: We
term these factors uncorrelated with gestures as domain factors, and this paper mainly focuses on five factors:
environment, user, location and orientation of the user and device deployment. Note that each domain factor could
involve different numbers of domains. For example, if the dataset contains 5 different locations, it means that
the location factor has 5 location domains. 2) Cross-domain: It means that the domains in the training dataset
and test dataset are different, and they have no intersection. It is worth noting that there maybe one, two or
more domain factors are changed in the training dataset and test dataset. In this work, Wi-Learner explores the
one-cross-domain gesture recognition performance where only a single domain factor changes, and also studies
multi-cross-domain gesture recognition when multiple domain factors simultaneously change. For example,
cross-location means that only location domain labels between the training dataset and test dataset are different
while the labels of other domain factors are the same. 3) In-domain: This term indicates the domains in the
training dataset include the domains in the test dataset. 4) Shot: It refers to the number of labeled samples per
gesture, i.e., one-shot means one labeled sample per gesture. 5) Training dataset: It refers to the sample set used
to train the model. In this work, we assume that the training dataset consists of samples from different domains
(e.g., user, orientation, location, device deployment and environment), which can be extracted from different
public Wi-Fi datasets, such as Widar 3.0. 6) Test dataset: It refers to the sample set used to test the trained model.

2.3 Practical Cross-domain Issues
In this part, we intend to exploit the experimental measurements from the public Widar3.0 dataset 1 to showcase
practical cross-domain issues existed in current wireless sensing systems. For simplicity, we here use two different
domain factors, environments and transceiver layouts, as an example. Note that when exploring the impact
induced by a certain domain, we ensure the other domains are the same. Specifically, we first select a performer’s
(User 2) two different gesture measurements (e.g., drawing zigzag and sliding). Then, we respectively choose the
same performer’s “zigzag” gesture measurements from a different room and a different device deployment to
1This public dataset can be obtained from Widar3.0 [61]
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(a) Performing the “ZigZag” ges-
ture by user 2.
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(b) Performing the “sliding” ges-
ture by user 2.

0 500 1000 1500
Sample Index

-60

-40

-20

0

20

40

60

F
re

qu
en

cy
 S

hi
ft 

(H
z)

(c) Performing the “ZigZag” ges-
ture by user 2 in a different room.
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(d) Performing “ZigZag” by user
2 in a different transceiver layout.

Fig. 3. The DFS spectrograms under different cases.
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Fig. 4. The gesture recognition accuracy under different cases.

mimic two different domains. Next, we employ the Short-Term Fourier Transform (STFT) to these measurements
for obtaining the DFS spectrograms.

The results are illustrated in Fig. 3. From Fig. 3(a) and Fig. 3(b), we can see that different gestures have different
DFS change patterns in the DFS spectrograms. This observation indicates that the DFS spectrograms can be used
to recognize different gestures, which is in line with the literature [31]. Based on Fig. 3(c) and Fig. 3(d), we can
observe that the DFS spectrograms of the same gesture are greatly different between two domains. It implies
that the DFS spectrograms carry adverse domain information irrelevant to gestures, which would lead to wrong
gesture recognition.

To quantify the gesture recognition performance in different domains, we first use six gestures’ measurements
in a fixed domain as the baseline, and respectively use the measurements from a different environment and
transceivers layout as two test domains. Then, we employ the DSF spectrogram as the input into the deep learning
model proposed in the study [26] to recognize gestures. Fig. 4 shows the average accuracy in each domain, we
can observe that the average accuracy of the baseline is 86.4%, yet the accuracy respectively drops to 29.2% and
38.6% in the other two domains, which implies that the recognition performance in a domain different from the
training domain significantly decreases. Thus, an accurate and robust cross-domain gesture recognition scheme
is highly desired.

3 SYSTEM OVERVIEW
Wi-Learner is a low-cost and accurate cross-domain gesture recognition system built on commodity Wi-Fi devices.
It only consists of a pair of transceivers. The core idea of Wi-Learner is to make the trained model learn to learn,
thereby achieving fast adaption to a new domain with a few samples. The system architecture is depicted in
Fig. 5, which involves the following modules:
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Fig. 5. System overview of Wi-Learner.

Data Collection Module: Wi-Learner first collects raw CSI readings when different users perform gestures
in different domains as the training dataset, which can be obtained from the public Wi-Fi dataset (e.g., Widar 3.0).
Then, Wi-Learner collects the measurements in a new domain as the target dataset.

Signal Pre-processing Module: Due to the hardware imperfection and environmental noise, the raw CSI
readings can not be directly used for feature extraction. To remove environmental noise from raw amplitude
readings, Wi-Learner applies a DWT algorithm. Then, Wi-Learner employs an antenna selection scheme to select
a suitable antenna pair and performs a weight-based conjugate multiplication between two antennas to remove
random phase offsets. After that, Wi-Learner employs a spectrogram enhancement method to obtain a useful
DFS spectrogram.

DFS Change Pattern Extraction Module: To efficiently extract distinct features from DFS spectrograms for
gesture representation, we adopt a lightweight convolution autoencoder. In addition, we add a gaussian noise
generation module into the autoencoder to improve the generalization capability of feature extraction.
Meta-learner Framework Module: To achieve good gesture performance in a new domain and avoid

intensive re-collection, we develop a novel meta-learner framework. Specifically, we first design a new base
model, and employ a task generation scheme to provide multiple tasks in the training dataset. Then, we employ
these tasks to teach the base model to learn a task rapidly. Next, a few samples from target domain are used to
adapt the model. Finally, Wi-Learner outputs the predictions of gestures.

4 SYSTEM DESIGN
In this section, we elaborate the system design of Wi-Learner to recognize users’ gestures through a pair of Wi-Fi
devices. The major parts of Wi-Learner are three modules, the signal pre-processing module, DFS change pattern
extraction module and meta-learner framework module.

4.1 Signal Pre-processing
In this sub-section, the system performs a set of pre-processing steps to obtain the useful DFS Spectrogram.

4.1.1 Signal Denoising. Due to the environmental noise and hardware imperfection, the collected CSI amplitude
readings are corrupted, as shown in Fig. 6(a). To alleviate this impact, we first adopt the DWT algorithm [8] to
decompose the raw signal into different level’s detail coefficients and approximation coefficients. Then, a detail
coefficient threshold is applied to each level for discarding the clutter. Finally, we use all the processed coefficients
to reconstruct the signal. The denoised amplitude readings are illustrated in Fig. 6(b). Note that we select the
Daubechies 3 wavelet (dB3) to decompose the signal, and reduce the signal to 6 levels.

4.1.2 DFS Spectrogram Extraction. In practice, it is challenging to directly extract accurate Doppler shifts from
the raw CSI. This is because the commodity Wi-Fi transmitter and receiver are not synchronized and introduce
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Fig. 6. The amplitude readings with/without signal denosing.

an unknown phase offset in each CSI measurement �̂� :

�̂� =

(
𝐻𝑠 (𝑓 ) +

∑︁
𝑖∈𝑁𝑑

𝑎𝑖 (𝑓 , 𝑡) 𝑒−𝑗2𝜋 𝑓
𝑣𝑖 𝑡

𝑐

)
𝑒−𝑗 (𝜂+𝛽) (3)

where (𝜂 + 𝛽) is the phase offset induced by the carrier frequency offset, sampling frequency offset and packet
detection delay [55].
To remove this phase offset, prior work [51] adopts a CSI power scheme. However, the power-based method

could remove the information of signs of Doppler shifts, thereby losing the gesture directions information. Instead
of using it, we adopt a weight-based conjugate multiplication scheme to overcome this issue. The key intuition is
that two antennas at the same receiver have the same phase offset. This scheme has two benefits: 1) eliminating
the phase offset while retaining the information of gesture direction; 2) magnifying the amplitude of the dynamic
path. Specifically, denote the CSI of the𝑚𝑡ℎ antenna as 𝐻1 (𝑓 , 𝑡), we perform a conjugate multiplication operation
between two antennas, we have:

𝐻1 (𝑓 , 𝑡)𝐻2 (𝑓 , 𝑡) =
(
𝐻𝑠,1 (𝑓 ) +

∑
𝑖∈𝑁𝑑,1

𝑎𝑖 (𝑓 , 𝑡) 𝑒−𝑗2𝜋 𝑓
𝑣𝑖 𝑡

𝑐

) (
𝐻𝑠,2 (𝑓 ) +

∑
𝑛∈𝑁𝑑,2

𝑎𝑛 (𝑓 , 𝑡) 𝑒 𝑗2𝜋 𝑓
𝑣𝑛𝑡
𝑐

)
= 𝐻𝑠,1 (𝑓 )𝐻𝑠,2 (𝑓 ) +

∑
𝑖∈𝑁𝑑,1,𝑛∈𝑁𝑑,2

𝑎𝑖 (𝑓 , 𝑡) 𝑎𝑛 (𝑓 , 𝑡)𝑒−𝑗2𝜋 𝑓
(𝑣𝑖−𝑣𝑛)𝑡

𝑐

+𝐻𝑠,1 (𝑓 )
∑

𝑛∈𝑁𝑑,2

𝑎𝑛 (𝑓 , 𝑡) 𝑒 𝑗2𝜋 𝑓
𝑣𝑛𝑡
𝑐 + 𝐻𝑠,2 (𝑓 )

∑
𝑖∈𝑁𝑑,1

𝑎𝑖 (𝑓 , 𝑡) 𝑒−𝑗2𝜋 𝑓
𝑣𝑖 𝑡

𝑐

(4)

where 𝐻 is the conjugate operation, 𝑁𝑑,1 and 𝑁𝑑,2 denote the dynamic paths for the first and second antenna,
respectively.
After that, the random phase offset is successfully removed. However, during this process, the Doppler

components induced by gesture’s movement are corrupted. As presented in Equation (4), we can see that
𝐻1 (𝑓 , 𝑡)𝐻2 (𝑓 , 𝑡) consists of three components:
• Static component. 𝐻𝑠,1 (𝑓 )𝐻𝑠,2 (𝑓 ), which is the product of two antennas’ static responses. It does not
introduce any Doppler shifts. However, due to the power of this component, containing the direct path, is
large, it could interfere with Doppler shift estimation. Thus, we can employ a high-pass filter to remove
this component.
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Fig. 7. Antenna selection.

• Cross component.
∑

𝑖∈𝑁𝑑,1,𝑛∈𝑁𝑑,2

𝑎𝑖 (𝑓 , 𝑡) 𝑎𝑛 (𝑓 , 𝑡)𝑒−𝑗2𝜋 𝑓
(𝑣𝑖−𝑣𝑛)𝑡

𝑐 , which is the product of two antennas’ dy-

namic responses. As a result, this component’s value is very small. In addition, since it contains the
difference of Doppler shifts, we employ a high-pass filter to eliminate it and avoid obfuscating real Doppler
shifts.
• Target component. The remaining two terms are two products of static responses of one antenna and
dynamic responses of another antenna. They both contain the Doppler shifts that we care about. Due to
the two antennas are close to each other, they have similar absolute Doppler shift values but with opposite
sign. Thus, only one term is the true Doppler shift. Here, the fourth term 𝐻𝑠,2 (𝑓 )

∑
𝑖∈𝑁𝑑,1

𝑎𝑖 (𝑓 , 𝑡) 𝑒−𝑗2𝜋 𝑓
𝑣𝑖 𝑡

𝑐 is

the correct Doppler shift, and we need to remove the third term to prevent it from interfering with Doppler
shifts of interest.

As discussed above, to extract Doppler shifts of interest, one dilemma we faced is how to remove the disturbance
components, such as the first three terms in Equation (4). To eliminate the impacts of the first two terms, we
employ a high-pass filter. As to the third term, we first adopt an antenna selection scheme to determine the proper
antenna pair, and then introduce a weight-based method to eliminate interference. The insight of the antenna
selection scheme is that selecting one antenna with the largest CSI variance and one antenna with the largest
CSI amplitude. The rationale behind it is that the CSI with larger variances is generally sensitive to the target’s
activity, resulting in larger dynamic responses, and the CSI with higher amplitude usually has strong static paths,
resulting in larger static responses. Hence, we design a ratio coefficient 𝜌𝑚 to characterize the properties :

𝜌𝑚 =
1
𝐾

𝐾∑︁
𝑘=1

𝑣𝑎𝑟 ( |𝐻𝑚 (𝑓𝑘 , 𝑡) |)
𝑚𝑒𝑎𝑛 ( |𝐻𝑚 (𝑓𝑘 , 𝑡) |)

,𝑚 ∈ [1, 3] (5)

where 𝑣𝑎𝑟 and𝑚𝑒𝑎𝑛 denote the variance and mean value of amplitude readings for the𝑚𝑡ℎ antenna of the 𝑘𝑡ℎ
subcarrier. With this calculation, we select the antenna pair with the highest and lowest ratio coefficient. As
shown in Fig. 7, we can see that the 1𝑡ℎ antenna has the largest variances with small amplitudes, while the 2𝑡ℎ
antenna has the largest amplitudes with small variances. By calculating the ratio coefficient, the 1𝑡ℎ and 2𝑡ℎ
antennas are selected as the first and second antennas in Equation (4).
Through above steps, we can alleviate the impact of the third term with reverse Doppler information. To

further eliminate the impact of the third term, a weight-based method is introduced. The basic intuition is to
minimize the static responses of 𝐻𝑠,1 (𝑓 ) and magnify the static responses of 𝐻𝑠,2 (𝑓 ). Thus, we employ two
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Fig. 8. DFS spectrogram of the gesture “Zigzag” performed
by user 1.
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Fig. 9. Enhanced DFS spectrogram of the gesture “Zigzag”
performed by user 1.

weights 𝜀1 and 𝜀2 into Equation (4), and we have:

�̂� =

(
( |𝐻1 (𝑓𝑘 , 𝑡) | − 𝜀1) 𝑒 𝑗∠𝐻1 (𝑓𝑘 ,𝑡 )

)
·
(
( |𝐻2 (𝑓𝑘 , 𝑡) | + 𝜀2) 𝑒−𝑗∠𝐻2 (𝑓𝑘 ,𝑡 )

)
(6)

where 𝜀1 = min ( |𝐻1 (𝑓𝑘 , 𝑡) |) and 𝜀2 = 𝜅 ·max ( |𝐻2 (𝑓𝑘 , 𝑡) |), 𝜅 is an empirical value of 30. By adding two weights
into 𝐻1 (𝑓𝑘 , 𝑡) and 𝐻2 (𝑓𝑘 , 𝑡) , we can effectively reduce the responses of the third term and increase the responses
of the fourth term we desired, thereby enabling to obtain accurate Doppler shifts information from �̂� .

Finally, to extract the DFS spectrogram from �̂� , We adopt the STFT to obtain Doppler shifts spectrogram. Fig. 8
illustrates the DFS spectrogram of the gesture “ZigZag” performed by user 1, we can see that the Doppler shifts
tend to alternate between positive and negative during the entire movement, which can indicate the gesture’s
trajectory and enable us to accurately recognize different gestures. To obtain a high quality spectrogram, we
employ a spectrogram enhancement scheme based on the seam carving algorithm [21]. The enhanced DFS
spectrogram is shown in Fig. 9, we can clearly see the fluctuation tendency of Doppler shifts .

4.2 DFS Change Pattern Extraction
Since different gestures cause different DFS change patterns, which are reflected in the DFS spectrograms, our
objective is to efficiently derive DFS change patterns from them. However, to achieve it, multiple issues are
needed to be tackled. First, performing a gesture can not be assumed as a single point’s movement. It means that
we can not directly use a threshold-based method to extract the Doppler change curve [50]. Otherwise, some
gesture-related information would be lost. Second, the whole DFS spectrogram contains substantial irrelevant
interference due to the effect of environment multi-paths, and its data dimension is high. Directly utilizing the
spectrogram as a DFS change pattern to recognize gestures would incur performance degradation and high time
overhead.
To address this problem, we design a lightweight denoised convolution autoencoder network to efficiently

extract DFS change patterns. The basic idea is that the encoder abstracts the information from the input data
(DFS spectrogram) to the latent representation (DFS change patterns), and the decoder tries best to reconstruct
the input data from the latent representation. The encoder-decoder strategy guides the network to focus on
extracting gesture-induced features while discarding the irrelevant information in the DFS spectrogram. Different
from traditional autoencoder networks [28], which is used to reconstruct the original image data, we aim to
reduce the dimension of the RF data and capture the latent distinguished features. In addition, we introduce a
noise generation module to improve the generalization capability of feature extraction. This network structure
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Fig. 10. The lightweight denoised convolution autoencoder network.

is illustrated in Fig. 10, which consists of three modules: a noise generation module, an encoder module and a
decoder module.
Noise generation module: Although a DWT denoise algorithm is used to alleviate the noise in the DFS

spectrogram, there still have a certain of environmental noise and device noise induced by device diversity.
To mitigate this impact, we design a noise generation module to emulate these noises as an additive gaussian
noise [33, 35], which aims to train an autoencoder model is robust to derive noise-free features. Now, consider
the input data is 𝑋 , we can obtain a distorted output �̃� as follows:

�̃� ∼ 𝑋 + 𝑁
(
0, 𝑠2)

where𝑋 denotes the DSF spectrogram, and 𝑠 is the standard deviation of the guassian noise, which is a pre-selected
hyperparameter.
Encoder module: Based on the distorted �̃� , we then feed it into the encoder module. The goal of encoder

module is to abstract the �̃� into a latent space 𝑍 , and the latent space 𝑍 is employed to characterize the distinct
features of the input data. Thus, we have:

𝑍 = 𝐸𝑛𝑐𝑜𝑑𝑒𝑟

(
�̃� ,𝑤�̃�

)
where the 𝐸𝑛𝑐𝑜𝑑𝑒𝑟 consists of three convolution layers and three max-pooling layers,𝑤�̃� is the parameters to be
learned.

Decoder module: After obtaining 𝑍 , the decoder module aims to reconstruct the input data 𝑋 from the latent
space 𝑍 . Hence, we put the 𝑍 into the decoder as follows:

𝑋 = 𝐷𝑒𝑐𝑜𝑑𝑒𝑟 (𝑍,𝑤𝑍 )

where 𝑋 is the reconstructed data, the 𝐷𝑒𝑐𝑜𝑑𝑒𝑟 includes three up-polling layers and three convolution layers,𝑤𝑍
is the parameters.
To ensure the latent space 𝑍 is able to represent the distinct features of the input data 𝑋 and robust to the

noises, the difference between the original input data𝑋 and reconstructed data𝑋 should be minimized. Therefore,
we design a loss function as follows:

𝐿𝑜𝑠𝑠

(
𝑋,𝑋

)
=

1
𝑏𝑛

𝑏𝑛∑︁
𝑖=1

(
𝑋𝑖 − 𝑋𝑖

)2

where 𝑏𝑛 is the size of the batch. We optimize this loss function on the training set by iteratively using the
backward propagation to minimize the loss value. Note that this process is only trained one time. Once the model
is trained well, we can only use the trained encoder to derive the latent features 𝑍 for the test data.
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Fig. 11. Structure of the base network.

Based on the proposed autoencoder scheme, we can feed the DFS spectrogram into the encoder and derive
the latent features to represent the DFS change patterns. With this model, we achieve the following benefits: 1)
we can automatically capture gesture related information without human involvement (e.g., manually design
threshold to obtain features) ; 2) The latent features significantly reduce the data dimension of DFS spectrogram
while keeping gesture related features, which can reduce the time overhead and enable an accurate gesture
recognition.

4.3 Meta-learner Framework
Upon acquiring the DFS change patterns, Wi-Learner needs to use them to identify different gestures. A straight-
forward method is to use a simple convolutional neural network. This method, however, only works well in a fixed
domain. In other words, when the target domain is different from the trained domain, the accuracy is significantly
decreased. This is because the extracted features contain substantial domain information (e.g., environment,
location and device deployment) irrelevant to gestures. Thus, to tackle this issue, we introduce a new meta-learner
framework. The basic intuition is to teach the model to learn how to learn, and enable Wi-Learner to have a fast
domain adaption capability in a new domain by only using a few samples per class. Different from the traditional
meta-learning framework [9] used for image recognition, our novel meta-learner framework carefully designs
a base network and a task generation scheme for wireless signals. The new meta-learner framework mainly
consists of four parts: base network, task generation, parameter updating and domain adaption. Next, we will
present the details of each part, respectively.

4.3.1 Base Network. The goal of the base network is to learn feature representations and recognize different
gestures from the obtained DFS change patterns. However, one practical problem we faced is how to select
appropriate CSI subcarriers’ DFS change patterns as the input. Since the CSI usually has multiple subcarriers (i.e.,
30), and some of them have strong correlations. In other words, they contain redundant information. If we directly
use DFS change patterns from all subcarriers, the computational complexity of the base network is significantly
increased. Thus, we employ the principal component analysis (PCA) algorithm to select the top two principal
components (i.e., 𝑓1, 𝑓2). The main reason behind empirically choosing the first two principal components is to
achieve a good trade-off between classification performance and computational complexity.
Once determining the indexes of subcarriers, we employ the corresponding DFS change patterns 𝑍 𝑓1 and 𝑍 𝑓2

as the input of the base network. Fig. 11 shows the structure of the base network, which consists of a feature
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extractor module and a gesture recognizer module. Specifically, to fully combine the information from different
subcarriers, we first perform a concatenation operation as follows:

𝑍𝑐𝑜𝑛𝑐𝑎𝑡 = 𝑍 𝑓1 ⊕ 𝑍 𝑓2
where ⊕ denotes concatenation operation.

Next, to learn the high-level features of gesture’s motion and reduce gesture-irrelevant information, we design
a residual DenseNet including four residual blocks. Each block adopts a residual architecture, as shown in Fig.11.
The reason for choosing residual architecture is that it contains two paths ( one path is the input travels multiple
convolution layers and another path is that the input freely passes through which is referred as to shortcut
connection [15]) that can guide the network to learn the difference between them, thereby removing some
gesture-irrelevant information. Meanwhile, this architecture can prevent overfitting and speed up convergence.
In addition, adopting multiple residual blocks is to derive deep-level features concealed in the input. By using the
residual DenseNet, we have:

𝐺 = 𝐷𝑒𝑛𝑠𝑒 (𝑍𝑐𝑜𝑛𝑐𝑎𝑡 ,𝑤𝐺 )
where 𝐺 is the learned features, 𝐷𝑒𝑛𝑠𝑒 (·) denotes the residual DenseNet, and𝑤𝐺 is the learned parameters. The
learned feature 𝐺 is fed into the gesture recognizer module to predict the labels of performed gestures. It first
goes through a fully connected layer to map the feature representation𝐺 into a latent space. We then employ a
softmax layer to calculate the probability 𝑦. Finally, a gesture’s label is predicted.

4.3.2 Task Generation Scheme. Although the aforementioned base network can effectively extract feature
representations, the features are still domain-dependent, which causes the base model to not work well in a new
domain. To handle this problem, our key insight is to generate a large number of tasks to mimic different domain
variations, teaching the base network how to adapt to a new domain with a few samples per class. However, it is
non-trivial to generate multiple diverse and realistic domain variations given the limited training dataset. To deal
with this issue, instead of randomly generating different tasks [9] based on the training dataset, we introduce a
novel task generation scheme to generate substantial domain variations, which includes two stages.

In the first stage, we perform a data augmentation operation for generating two new kinds of synthesized domain
factors on the training dataset 2. Specifically, this augmentation operation consists of two signal transformations
of the original data. The first transformation is to add different levels of noise to the signals without changing
the length of them, which aims to mimic the signals are polluted by environment noise and hardware noise, we
term it as noise domain factor. The second transformation is to stretch or compress the signals for simulating
different velocities of the performed gestures, we term it as velocity domain factor. Note that the gesture label of
each transformation is the same as the original signal. Through this step, the number of domains in the training
dataset is augmented. Notice that the goal of this augmentation operation is only to make our model robust to
noise and velocity factors.
In the second stage, since the domain variations based on the augmented training dataset are still limited

compared to the practical domain variations, we thus perform a task generation on the augmented training dataset
to generate substantial single-domain tasks (one domain per task) and multi-domain tasks (multiple domains
per task) for mimicking multiple diverse and realistic domain variations. To be specific, consider the training
dataset involves three domain factors (e.g., users (𝑈 ), locations (𝐿) and orientations (𝑂)), each factor contains 𝑅
domains. So, there have 𝑅3 domains, ranging from “𝑈1𝐿1𝑂1" to “𝑈𝑅𝐿𝑅𝑂𝑅". Note that there is no intersection of
data for each domain. For single-domain tasks, we generate each task by sampling each gesture’s data from the
same domain. For multi-domain tasks, at least two gestures’ data in a task is sampled from two different domains.
That is to say, the gestures’ data in a multi-domain task can be sampled from two or three different domains.
2We assume that the training dataset consists of the samples from different domains (e.g., user, orientation, location, device deployment and
environment), which can be extracted from public Wi-Fi datasets, such as Widar 3.0.
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ALGORITHM 1: Wi-Learner’s Base Network Training
Input: Training dataset 𝑆 = {(𝑥1, 𝑦1), . . . , (𝑥𝑛, 𝑦𝑛)}, step size 𝜁 , meta step size 𝜉
Input: number of examples used for inner gradient update 𝑘
Output: Trained parameters 𝜃
Randomly initialize 𝜃
while not done do

𝑇 ←GenerateTask(𝑆)
for 𝑇𝑖 ∈ 𝑇 do

𝑆𝑇𝑖 ← 𝑘 support samples from 𝑇𝑖
𝑄𝑇𝑖 ← 𝑛 − 𝑘 query samples from 𝑇𝑖 where 𝑆𝑇𝑖 ∩𝑄𝑇𝑖 = ∅

Evaluate ∇𝜃𝐿𝑜𝑠𝑠𝑇𝑖 (𝜃 ) with 𝑆𝑇𝑖 via 𝐿𝑜𝑠𝑠𝑇𝑖 (𝜃 ) =
𝑚𝑆𝑇𝑖∑
𝑗=1

𝑦 𝑗 log
(
𝑦 𝑗

)
+

(
1 − 𝑦 𝑗

)
log

(
1 − 𝑦 𝑗

)
+ 𝜅𝑜

Compute adapted parameters with gradient descent: 𝜃𝑇𝑖 ← 𝜃 − 𝜁∇𝜃𝐿𝑜𝑠𝑠𝑇𝑖 𝑓 (𝜃 )
Use 𝜃𝑖 ′ for one iteration on 𝑄𝑇𝑖 , compute the loss 𝐿𝑜𝑠𝑠𝑇𝑖 (𝜃𝑇𝑖 )

end
Update 𝜃 ← 𝜃 − 𝜉∇𝜃

∑
𝑇𝑖 ∈𝑆

𝐿𝑜𝑠𝑠𝑇𝑖
(
𝜃 − 𝜁∇𝜃𝐿𝑜𝑠𝑠𝑇𝑖

(
𝜃𝑇𝑖

) )
end

Through the above task generation scheme, we can obtain multiple diverse and realistic domain variations with
the limited training dataset, supporting Wi-Learner can teach the model to effectively learn from a few samples,
thereby delivering a good cross-domain result, even crossing multiple domains simultaneously.

4.3.3 Parameter Updating. After generating multiple tasks from the training dataset, our next goal is to employ
them for training the parameters of the based network. Toward this end, Wi-Learner adopts an optimization-based
training algorithm to perform parameter updating. The basic idea is to seek the effective initial model parameters
𝜃 , enabling the model to rapidly adapt to a new domain with a few samples. Specifically, we first select training
samples from each task 𝑇𝑖 , then divide them into a support set 𝑆𝑇𝑖 and a query set 𝑄𝑇𝑖 without overlapping
samples, both of them only contain 𝑁 samples per class. It is worth noting that the value of 𝑁 is usually small,
such as one or two samples per class. The reason is to simulate a few samples we can obtain from a new domain.

Next, we use the support set to train the task-specific parameters 𝜃𝑇𝑖 of the base network. This aims to mimic
the adaption process of the base model to learn the knowledge from a new domain with a few samples. Afterward,
the query set is used to evaluate the task performance and iteratively update the initial parameters 𝜃 . Specifically,
we use a cross-entropy loss to calculate the loss of each task as follows:

𝐿𝑜𝑠𝑠𝑇𝑖 (𝜃 ) =
𝑚𝑆𝑇𝑖∑︁
𝑗=1

𝑦 𝑗 log
(
𝑦 𝑗

)
+

(
1 − 𝑦 𝑗

)
log

(
1 − 𝑦 𝑗

)
+ 𝜅𝑜

where𝑚𝑆𝑇𝑖
denotes the number of samples for the task 𝑆𝑇𝑖 , 𝜅 is the hyper-parameter, and 𝑜 is a regularizer term

for avoiding overfitting. Then, we perform a gradient adjustment operation with one step to the initial model
parameters 𝜃 , we have:

𝜃𝑇𝑖 = 𝜃 − 𝜁∇𝜃𝐿𝑜𝑠𝑠𝑇𝑖 (𝜃 )

where 𝜁 represents the step size, it is a hyper-parameter to control the model learning rate. Generally, with a
larger value of 𝜁 , the rate of the adaption process can be faster.
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Fig. 12. Learning curve of the query set in the training phase.

To find the parameters 𝜃 that can minimize the sum loss of all tasks with a small number of gradient steps, we
define a meta-objective function as follows:

min
𝜃

∑︁
𝑇𝑖 ∈𝑆

𝐿𝑜𝑠𝑠𝑇𝑖
(
𝜃 − 𝜁∇𝜃𝐿𝑜𝑠𝑠𝑇𝑖 (𝜃 )

)
Then, we employ stochastic gradient descent (SGD) to optimize the meta-objective function, the parameters 𝜃 are
updated as follows:

𝜃 ← 𝜃 − 𝜉∇𝜃
∑︁
𝑇𝑖 ∈𝑆

𝐿𝑜𝑠𝑠𝑇𝑖
(
𝜃 − 𝜁∇𝜃𝐿𝑜𝑠𝑠𝑇𝑖 (𝜃 )

)
where the meta step size 𝜉 is a hyper-parameter. The detailed algorithm is presented in Algorithm 1.

Through this optimization process, the parameters 𝜃 continue to learn knowledge from diverse tasks, and
eventually are sensitive to different tasks. To demonstrate the parameters 𝜃 can learn knowledge, we plot the
learning curves of the support set and the query set in the training phase. As shown in Fig 12, we can see that as
the number of iterations increases, the accuracy of the query set continually rises. This result confirmsWi-Learner
can teach the model to learn how to learn with only a few samples in the target domain. The rationale behind it
is that the support set is new data for the model, which aims to update the parameter 𝜃 to let the model learn the
features and achieve a better performance in the query set. Finally, the optimized parameters 𝜃 can be used as
effective initial values of the base network, and enable the based network to have a fast adaption capability to a
new domain. Note that with more different tasks, the model has better generalization performance.

4.3.4 New Domain Adaptation. To achieve accurate gesture recognition in a new domain, we need to perform
domain adaption by using a few samples per class in a new domain to calibrate the parameters of the trained
dataset. This is because when the domain changes, it causes the incoming test distribution to diverge from the
model training samples, thereby leading to poor recognition accuracy. Specifically, we first use the optimized
parameters 𝜃 as the initial values to the base model. Then, the few samples in a new domain are employed to
update the parameters 𝜃 . As an example, the updated parameters in the 𝑖𝑡ℎ gradient descent step are as follows:

𝜃𝑖 ← 𝜃𝑖−1 − 𝜁∇𝜃𝐿𝑜𝑠𝑠𝐷 (𝜃𝑖−1)

where 𝐷 denotes the samples collected in the new domain. After updating the parameters with a few gradient
steps, Wi-Learner can successfully perform gesture recognition in a new domain. Note that the number of training
epochs is very small, which enables real-time gesture recognition. (Detailed results in Section 6).
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Fig. 13. A typical setup of devices and domains in the sensing area, figure modified from [61].

5 IMPLEMENTATION
We implement Wi-Learner3 and evaluate the performance on a public dataset from Widar 3.0 [61]. The dataset
consists of one transmitter and six receivers, each of them equips an Intel 5300 wireless NIC. The receivers all
possess three antennas which are placed in a line. Then, the working frequency is 5.825 GHz, and the sample rate
is 1000 packets per second. The gesture dataset of Widar 3.0 is collected from 16 users, 5 locations, 5 orientations,
and 6 receivers in three different rooms. The deployment in the sensing area is illustrated in Fig. 13. Due to the
non-uniform distribution of gestures and users across different domains, we mainly select 6 gestures and 5 users
for overall performance distribution. The 6 gestures are sliding, drawing O, drawing zigzag, drawing N, drawing
triangle and drawing rectangle, respectively. We refer to the selected data as dataset 1. Note that, we select the
second receiver and the transmitter as one pair of Wi-Fi transceivers by default. Other receivers (1, 3, 4, 5, 6)
are used to test whether our proposed solution can work well in different deployments. Besides, we also use
two other Wi-Fi public datasets (e.g., SignFi [26] and WiAR [13]) with different sensing tasks to evaluate the
generalizability of our system.

6 PERFORMANCE

6.1 Overall Performance
6.1.1 In-domain Gesture Recognition Accuracy. To evaluate the performance of in-domain gesture recognition,
we take all domain factors into consideration. Specifically, we select 90 percentage samples of each domain
for training and the remaining samples for testing on dataset 1. Fig. 14(a) shows the confusion matrix of 6
gestures, we clearly see that Wi-Learner achieves an average accuracy of 93.2%. Besides, Wi-Learner can achieve
consistently high accuracy of over 90.1% for all gestures. These results indicate that Wi-Learner can effectively
extract gesture-related features.

6.1.2 Cross-domain Gesture Recognition Accuracy. We now evaluate the cross-domain gesture recognition
performance on dataset 1. Specifically, when evaluating each specific domain factor, we ensure the other domain
factors are the same, and calculate the average accuracy of cases where one out of all domains is selected for
testing and the rest of domain samples are for training. Note that Wi-Learner only employs one-shot per gesture
in each target domain to adapt the trained network. Fig. 14(b), 14(c), 14(d), 14(e) and 14(f) illustrate the gesture

3Code is available at: https://github.com/Coolnerdn/WiLearner.
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(a) In-Domain (93.2%).
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(b) Cross Location (91.4%).
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(c) Cross Orientation (86.5%).
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(d) Cross Environment (74.2%).
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(e) Cross Person (89.4%).
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(f) Cross Deployment (94.4%).

Fig. 14. Confusion matrices of different settings when only using one-shot per gesture in the target domain.

confusion matrices under each specific domain factor including location, orientation, environment, person and
transceiver’s deployment, respectively. We can observe that Wi-Learner delivers an average accuracy ranging
from 74.2% to 94.4% when crossing different domains using one-shot per gesture. It is worth noting that although
the cross-environment average accuracy is only 74.2%, the accuracy has a significant improvement of 50.9%
compared to the performance without performing domain adaption (23.3%). In addition, the accuracy can be
improved by using more shots for domain adaption (Detailed results in Section 6.2.1). Overall, these results
indicate that Wi-Learner can achieve robust and accurate cross-domain gesture recognition in a new domain.

6.1.3 Verification of the Meta-learner Framework. To verify the effectiveness of the meta-learner framework,
we compare Wi-Learner to three baselines on dataset 1: 1) Src: only using the training dataset to train the base
network, and there is no adaptation to the target domain; 2) Tgt: only employing one-shot per gesture from the
target domain to train the model; 3) Src+ Tgt: using both the training dataset and the target domain’s one-shot
per gesture for training the deep learning model. Note that Wi-Learner uses the training dataset to train the base
network and one-shot per gesture from the target domain to adapt the model. The results are shown in Fig. 15.
We can see that Wi-Learner outperforms the other baselines when crossing different single domain factors.4
This is because that the proposed meta-learner framework can teach Wi-Learner to learn how to learn from
the training dataset, making Wi-Learner possess a fast adaption capability in a new domain. Thus, these results
demonstrate the effectiveness of proposed meta-learner framework.

6.1.4 Verification of the Autoencoder Scheme. To assess the performance of the proposed denoised autoencoder
(DAE) scheme for cross-domain gesture recognition, we run two benchmark experiments on dataset 1 with and
without the scheme. Specifically, we respectively feed the generated DFS spectrograms and the DFS change
4Note that when evaluating each domain factor, we calculate the average accuracy of cases where one out of all domain instances are used for
testing, while the rest domain instances are for training. For example, when considering the location factor, the accuracies over five locations
are averaged and employed as the final cross-location accuracy.
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Fig. 15. The performance of the baselines and Wi-Learner.
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Fig. 16. The performance with/without the proposed DAE
scheme.
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Fig. 17. The performance with task generation scheme for
each domain factor.
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Fig. 18. The performance with varying numbers of shot for
each domain factor.

pattern derived from the DAE scheme into the meta-learner framework in Section 4.3. The results are presented
in Fig. 16. It is clear that the cross-domain performance with our proposed scheme is consistently better than
directly using DFS spectrograms, which demonstrates the proposed DAE scheme is highly effective in extracting
useful representation from DFS spectrograms and discarding the irrelevant information.

6.1.5 Verification of the Task Generation. To evaluate the effectiveness of task generation scheme on cross-domain
gesture identification, we employ a random task generation method from the training dataset as a baseline, which
is widely used in the meta-learning technology [17]. Specifically, we conduct a set of benchmark experiments
by evaluating each specific domain factor on dataset 1 and use one-shot per gesture in each target domain to
adapt the trained network. Fig. 17 plots the average cross-domain gesture recognition performance. The results
depict our proposed scheme works better than the random-based scheme. For example, when crossing different
domains, Wi-Learner at least has an increase of accuracy by 12.2% and up to 25.3% improvement. This implies
that our scheme can generate multiple diverse and realistic tasks to mimic different domain variations, and help
the base network learn how to adapt better to a new domain. In conclusion, the task generation scheme can
effectively improve cross-domain performance.

6.2 Diverse Factors on Wi-Learner
In this subsection, we investigate the factors affecting the system performances.

6.2.1 Impact of Number of Shots. In this experiment, we change the number of shots collected in the target
domain for adapting the trained model to evaluate the impact on cross-domain accuracy. Specifically, we vary
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Fig. 19. The performance with varying different base net-
works.
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Fig. 20. The impact of training dataset diversity.

the shot number with 1, 2 and 4, which are frequently used in few-shot learning evaluations. For each case,
we respectively evaluate each specific domain factor while keeping the other domain factors are the same.
Fig. 18 shows the system performance of different shot numbers. We can see that the recognition accuracy
increases for each domain factor as the number of shots increases. In particular, the average accuracy for crossing
different environments increases from 74.3 to 91.7% when the number of shots varies from 1 to 4. This is because
Wi-Learner can learn more target domain related information with more shots involved. Hence, Wi-Learner is
able to achieve better cross-domain gesture recognition by using more shots in the adaption phase.

6.2.2 Impact of Different Base Networks. We now evaluate the system performance when the base network is
changed. Specifically, we select two different architectures of the base network. One is the convolutional neural
network (CNN) architecture, which is modified from SignFi [26]. The other is selecting the residual architecture,
which merely contains one residual block. For each case, we respectively evaluate each specific domain factor
while keeping the other domain factors are the same. As Fig. 19 shows, our proposed base network outperforms
the other two architectures when using one-shot per gesture in the target domain. And we can observe that
Wi-Learner increases the accuracy by around 24.7% − 31.5% compared with the CNN architecture. We believe
this is because our base model is able to derive deep-level features concealed in the input.

6.2.3 Impact of Training Dataset Diversity. In this experiment, we explore how the number of locations in the
training dataset impacts cross-location performance. Specifically, we vary the number of locations from 1 to 4 in
the training dataset, and the collections from another location are used to the target dataset. Note that we keep
other domain factors are the same in the training dataset and target dataset. The results are presented in Fig. 20.
We can see that the average accuracy increases from 86.7% to 91.4% with one-shot as the number of locations
varies from 1 to 4, and the performance is always above 86.7%. This is due to with more location domains in the
training dataset, Wi-Learner can learn more knowledge from them to teach the trained model how to adapt to a
new domain. Even the number of location domains in the training dataset is limited, Wi-Learner still can learn
knowledge from other domain factors (e.g., orientation, environment, person and deployments) and deliver a
good performance.

6.2.4 Impact of Crossing Multiple Target Domains. In practical scenarios, multiple domain factors may change
simultaneously, which is very significant for the real-world adoption of Wi-Learner. Thus, we evaluate the system
performance by changing the number of crossing domain factors. Since there are too many combinations of
the five factors (i.e., location (L), orientation (O), environment (E), user (U) and transceiver deployment (D)), we
select four combinations of these domain factors: L/O, L/O/U, L/O/U/D, L/O/E/U/D. Note that when testing the
above combinations, we keep the other domains unchanged. In other word, the difference of domain factors
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Fig. 21. The impact of crossing multiple factors.
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Fig. 22. Comparison of recognition models.

between the training data and the target data is only above mentioned domain factors. Fig. 21 illustrates the
results, we can see that the identification accuracy decreases with more domain factors changes simultaneously.
For example, when the number of domain factors varies from 2 to 5, the average accuracies with one-shot are
87.2%, 80.9%, 82.1% and 67.2%, respectively. These results are expected because with more domain factors change,
Wi-Learner is harder to extract gesture-related features. In addition, we observe that the accuracies with 4-shot
are increased to 95.3%, 95.1%, 91.7% and 87.5% as the number of domain factors varies from 2 to 5. Thus, we can
employ more shots to improve the performance of crossing multiple target domains simultaneously.

6.2.5 Comparison with Existing Recognition Models. We compared our method Wi-Learner with four state-of-the-
art gesture recognition methods, including the traditional CNN architecture (SignFi [26]), the transfer learning
architecture (CrossSense [57]), the adversarial learning architecture (EI [16]), and the meta-learning architecture
(RFNet [5]). For simplicity, we here only evaluate the cross-location performance on dataset 1 (Widar 3.0 dataset).
Specifically, we calculate the average accuracy of cases where one out of all location instances are used for testing,
while the rest of location instances are for training. Fig. 22 plots the results of five different methods by varying
different numbers of shots for adaption. we can clearly see that Wi-Learner delivers better performance than
the other four methodologies. In addition, we observe an interesting thing is that when only employing a few
samples (e.g., 1-shot) from the target domain to adapt the model, CrossSence and EI have worse performance
than the CNN method (e.g., SignFi), which does not have the cross-domain capability. This result indicates prior
transfer learning methods and adversarial learning methods can not work well in a new domain only with a few
target samples available. Instead, Wi-Learner can achieve an accurate cross-domain gesture recognition accuracy
only using one-shot in the target domain.

6.2.6 Impact of Adaptation Overhead. In this experiment, we compare Wi-Learner with the transfer learning
architecture and adversarial learning architecture to evaluate the adaption overhead in a new target domain,
which is important to ensure real-time gesture recognition. Specifically, we here only consider cross-location
performance on dataset 1, and we use four shots per gesture in the target domain to adapt each trained model.
Fig. 23 shows the accuracy training curves for the target adaption process. As we can see, Wi-Learner significantly
reduces the adaptation overhead compared to the two methods while delivering the highest accuracy. For example,
Wi-Learner only requires 7 epochs to converge, the other two methods however need 20 epochs and 75 epochs to
converge, respectively. Thus, these results confirm that Wi-Learner has the fastest convergence and retains a
higher identification accuracy, which ensures a real-time application.

6.2.7 Generalizability for Other Datasets. We now assess the generalizability of Wi-Learner to the other Wi-Fi-
based datasets for different sensing applications. Specifically, we select two public datasets: 1) SignFi [26]: it
aims to recognize sign language gestures using Wi-Fi. We select a dataset that contains 7500 instances of 150
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Fig. 24. The performance on two public Wi-Fi sensing datasets.

sign gestures performed by 5 users in a lab environment and 1500 instances of 150 sign gestures performed by
one of the 5 users in a home environment. We refer to these measurements as dataset 2. 2) WiAR [13]: it aims
to identify different activities with Wi-Fi devices. This dataset includes 16 different activities performed by 10
users, and each activity is performed by 30 times. We refer to these measurements as dataset 3. Based on the two
datasets, we respectively explore the cross-environment and cross-user issues on dataset 2 and dataset 3. For
dataset 2, we select one user in a home environment as the target domain and the lab environment as the training
domain. For dataset 3, we select one user as the target domain and the remaining users as the training domain.
Then, we evaluate the performance with the following cases: 1) Case 1: Employing 80% measurements of the
training dataset and target dataset for training and 20% for testing; 2) Case 2: only using the training dataset
for training and using the target dataset for testing; 3) Case 3, 4, 5: using the training dataset for training and
different numbers of shots per gesture (e.g., 1, 2, 4) from target dataset to adapt the trained model, respectively.
Finally, the remaining target dataset is used for testing. Note that case 1 and 2 employ the model modified from
SignFi, case 3, 4 and 5 apply our proposed deep learning model.
Fig. 24 plots the recognition performance in the two new datasets. We see that the accuracy drops sharply

for case 2 compared with case 1. This is due to the received signals not only carry gesture information but also
involve substantial domain information. When applying Wi-Learner’s framework, we can observe there have
60.3% and 52.9% accuracy improvement with one-shot on the dataset 2 and dataset 3 compared with case 2,
respectively. Besides, with more shots are used for adapting, the performance is better. Thus, Wi-Learner can
work well for other datasets with different sensing tasks, which implies the good generalizability of Wi-Learner.

6.2.8 Generalizability for Real-world Scenarios. To evaluate how Wi-Learner can address the domain-dependent
issue in real-world scenarios, we collected a large number of new gesture data in our lab environment. Note that
there is a significant domain shift between the new dataset and Widar 3.0 dataset, as the two datasets collect
CSI measurements under entirely different domain factors, such as the user, location, orientation, environment,
device, and deployment. Specifically, we recruited five volunteers to perform five gestures, including “slide”,
“draw a circle”, “draw zigzag”, “push and pull”, and “sweep”. For each gesture, we ask each volunteer to perform 30
times at five locations, respectively. The detailed experimental setup is shown in Fig. 25(a). After collecting new
gesture data, we employ the public dataset, WiDar 3.0, to train our model. Then, we use different shots per gesture
for each user and location in our new dataset to adapt the trained model, and use the rest of the new dataset
to evaluate the real-world performance. Fig. 25(b) illustrates the results of Wi-Learner and RF-Net. We can see
that our method Wi-Learner outperforms RF-Net and can achieve a good cross-domain performance. In addition,
as the number of shot increases, the accuracy of Wi-Learner continuously increases. For example, Wi-Learner
respectively achieves an average accuracy of 72.01% and 92.23% when 1-shot and 4-shot are involved. The above
results demonstrate that Wi-Learner can leverage a few samples per class in a new domain to effectively adapt
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Fig. 25. The performance on the real-world scenario.

the model trained by the public dataset for achieving cross-domain gesture recognition, even if all domain factors
change.

7 DISCUSSION
Naturally, there is room for future work and further improvement. We discuss a few points here.

Multi-user scenarios. Multi-user sensing is a well-known challenge in RF sensing because the reflection signals
from multiple targets get mixed at the receiver, interfering with each other. The current version of Wi-Learner
works well with a single target. When there are multiple targets, the system works well if the targets are far
away from each other. If multiple targets are close to each other, it is challenging for our system to work. We
believe some recent progress in multi-dimensional signal processing [54] can help to achieve multi-user sensing.
It is a challenging yet interesting research direction to deal with multiple targets in our future work.

Continuous location changes. During our daily life, we are very likely to stand at different locations while
performing gestures. In current version, Wi-Learner requires the user to provide one or a few training samples
for achieving accurate gesture recognition once their location changes. This process, however, is cumbersome
and seems to be not realistic. We believe it is possible to combine our proposed learning-based solution with a
model-based solution (e.g., designing a location-independent MNP feature [10]) to overcome this shortcoming.
We will leave this scenario as our future work.

Model learning overhead. To achieve accurate cross-domain gesture recognition, Wi-Learner requires a large
amount of data from different domains as a training dataset to train the proposed model. Although the collection
process of the training dataset is time-consuming and labour-intensive, we believe this issue will be resolved
when more developers and researchers are devoted to building standard Wi-Fi public gesture datasets. In addition,
the current version of Wi-Learner needs one sample per class in the target domain to update the model for
achieving cross-domain gesture recognition. To avoid collecting data in the target domain, our future work is to
employ more advanced frameworks such as zero-shot learning [39].

Generalization capability. With more different domain training data for task generation, Wi-Learner can possess
a stronger generalization ability. The current implementation of Wi-Learner only employs some data from an
open dataset as training data to generate different tasks, it causes a limited generalization ability to a new domain.
We believe that Wi-Learner can achieve better cross-domain gesture recognition with more available standard
Wi-Fi gesture datasets.
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Unseen gesture recognition. In practical scenarios, there are usually occurring undefined gestures. However,
the current version of Wi-Learner only focuses on the trained gestures and does not study an unseen gesture
involves. This direction is challenging and promising, we leave it as our future work to explore how to adapt to a
new gesture based on the learned knowledge of performed gestures.

8 RELATED WORK
In this section, we will discuss the related studies in gesture recognition and other cross-domain works.

8.1 Vision-based Gesture Recognition
Vision-based systems [2, 7, 29, 44, 60] utilize cameras to capture users’ motion and perform gesture recognition.
Although they can achieve high accuracy, they are highly dependent on the light condition and the viewing
angle. Moreover, they would incur privacy invasion. In contrast, Wi-Learner is immune to lighting conditions
and does not raise privacy issues.

8.2 Sensor-based Gesture Recognition
Due to the popularity of portable devices, many current systems focus on sensor-based (e.g., smartphone,
wristband and smartwatch) gesture recognition [1, 19, 20, 42]. For example, Viband [20] exploits accelerometers
to capture bio-acoustic data and perform hand gestures. Another work [42] performs gesture detection by using
a smartwatch to track hand trajectory. Though promising, these methods require users to carry wearable devices,
which are cumbersome and would raise a feeling of discomfort. Different from the above systems, Wi-Learner
identifies different gestures in a non-intrusive manner that does not require users to carry any device.

8.3 RF-based Gesture Recognition
Extensive efforts have been devoted to achieving gesture recognition by employing various RF signals, including
millimeter radar [32, 49], RFID [6, 36, 59, 62], andWi-Fi [25–27, 31, 40]. Wang et al. [49] exploit Google’s Soli radar
sensors for dynamic gesture recognition. mmWrite [32] performs handwriting tracking by using a mmWave radio
to sense the hand trajectory. Grfid [62] employs a weighted DTW scheme to achieve robust gesture recognition.
These systems can achieve satisfactory results, they however require expensive devices. To avoid this issue,
WiSee [31] performs whole-home gesture recognition by using Wi-Fi signals to detect the Doppler shifts induced
by gestures. WiFinger [40] exploits the unique CSI patterns for fine-grained finger gesture recognition. SignFi [26]
proposes a convolutional neural network to identify performed sign gestures with Wi-Fi devices. The major
drawback of these methods is that their performance drops sharply when the new domain is not the same as the
trained domain. In contrast, Wi-Learner can realize accurate gesture performance in a new domain.

8.4 Cross-domain Gesture Recognition
Since current mainstream gesture recognition systems can not achieve a good performance when the domain
changes, many researchers have tried to address the cross-domain issue. Existing solutions for improving systems’
adaption ability to domain variations (e.g., environment, person, location, and orientation) can be divided into
two categories, including domain-independent feature extraction and cross-domain adaptation.

Domain-independent feature extraction. There are two major approaches to extract domain-independent features
for gesture recognition. The first approach is to employ an adversarial network as domain discriminator to
alleviate the impact of domains, so as to derive domain-independent features [4, 16, 21, 23, 38]. For example,
EI [16] designs a conditional adversarial architecture to remove the environmental factors. CrossGR [23] extracts
the user-agonistic activity features from theWi-Fi channel information by using an adversarial network. Although
these methods can alleviate the impact of domains, they usually need a substantial amount of samples from
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the target domain, which is labour-intensive and time-consuming. The second approach is to utilize geometric
models to capture domain-independent features [10, 61]. For example, Widar3.0 [61] leverages multiple links to
obtain a domain-independent body-coordinate velocity profile. However, this method requires deploying multiple
devices and knowing the accurate location of transceivers in advance. Gao et al. [10] employ two non-parallel
RF links to design MNP features for achieving position-independent gesture recognition. Yet, it cannot adapt to
new users. Different from them, Wi-Learner only needs a few samples in target domains such as one sample
per gesture, and requires a pair of transceivers. In addition, Wi-Learner is robust to different domain factors
including environment, person, location, orientation, and deployment factors.

Cross-domain adaption. The essence of this category is to transfer a domain-specific recognition model into a
new domain by using new data in the new domain. One approach is transfer learning [45, 57, 58]. For example,
CrossSense [57] adopts transfer learning to achieve cross-site sensing. TL-Fall [58] proposes a transfer learning
scheme to make the fall detection model work well in the new environment with only a few labeled data.
Although transfer learning methods can adapt recognition model to a new domain, it requires a large number of
samples from the target domain to achieve a satisfying performance. To reduce the collection effort, some recent
approaches adopt meta-learning frameworks [5, 53]. For example, RF-Net [5] uses a metric-based meta-learning
framework to achieve cross-environment human activity recognition with two pairs of Wi-Fi devices. However,
RF-Net only focuses on a single domain factor (e.g., different environments), and has a limited cross-domain
performance with an average accuracy of about 60% using one shot per gesture in the target domain. Xiao et
al. [53] adopt a few-shot learning framework to recognize unseen gestures, which however requires four receivers
to transform existing gestures into virtual gestures. This process requires sophisticated knowledge, which cannot
be extended to other tasks straightforwardly. Different from them, Wi-Learner can achieve robust performance
across different domain factors using one sample per gesture and one pair of transceivers, and is easy to scale
to other sensing tasks, which benefits from our a set of signal processing schemes and a new meta-learning
framework.

9 CONCLUSION
This paper has presented Wi-Learner, a machine-learning-based cross-domain gesture recognition system. Wi-
Learner is designed to be low infrastructure cost by using just one pair of Wi-Fi devices and low overhead by
relying on just one sample per gesture when targeting a new domain for new users and device setup. Wi-Learner
applies a series of signal processing to minimize the impact of the inherently noisy Wi-Fi signal measurements. It
then uses a lightweight autoencoder to extract Wi-Fi signal representation for gesture recognition. To quickly
adapt to changing domain factors like users and wireless device locations, Wi-Learner introduces a meta-learner to
teach the decision model to maximize the information extracted from limited training samples during deployment.
Extensive experiments across three public datasets demonstrate that Wi-Learner can realize accurate and robust
cross-domain gesture recognition using contactless Wi-Fi signals.
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