RF-CM: Cross-Modal Framework for RF-enabled Few-Shot Human
Activity Recognition

XUAN WANG, Northwest University, China

TONG LIU, Northwest University, China

CHAO FENG, Northwest University, China

DINGYI FANG, Northwest University, Shaanxi International Joint Research Centre for the Battery-Free Internet
of Things, China

XIAOJIANG CHEN", Northwest University, China

Radio-Frequency (RF) based human activity recognition (HAR) enables many attractive applications such as smart home,
health monitoring, and virtual reality (VR). Among multiple RF sensors, mmWave radar is emerging as a new trend due to its
fine-grained sensing capability. However, laborious data collection and labeling processes are required when employing a
radar-based sensing system in a new environment. To this end, we propose RF-CM, a general cross-modal human activity
recognition framework. The key enabler is to leverage the knowledge learned from a massive WiFi dataset to build a radar-
based HAR system with limited radar samples. It can significantly reduce the overhead of training data collection. In addition,
RF-CM can work well regardless of the deployment setups of WiFi and mmWave radar, such as performing environments,
users’ characteristics, and device deployment. RF-CM achieves this by first capturing the activity-related variation patterns
through data processing schemes. It then employs a convolution neural network-based feature extraction module to extract the
high-dimensional features to be fed into the activity recognition module. Finally, RF-CM takes the generalization knowledge
from WiFi networks as guide labels to supervise the training of the radar model, thus enabling a few-shot radar-based
HAR system. We evaluate RF-CM by applying it to two HAR applications, fine-grained American sign language recognition
(WiFi-cross-radar) and coarse-grained gesture recognition (WiFi-cross-RFID). The accuracy improvement of over 10% in both
applications demonstrates the effectiveness of RF-CM. This cross-modal ability allows RF-CM to support more cross-modal
applications.
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1 INTRODUCTION

Human activity recognition built upon Radio-Frequency (RF) sensors (e.g., RFID, WiFi, and millimeter wave
(mmWave) radar) promises many exciting application scenarios, such as gesture recognition [7, 10, 20, 22, 27,
43, 49], pose tracking [15, 32, 33], and vital sign detection [6, 11, 26, 44, 50]. RF-based recognition systems that
provide non-intrusive [14] and continuous sensing over the air have attracted widespread attention in both
academia and industry.

Machine learning is a viable means to construct recognition models for RF-enabled HAR systems [8, 21, 29, 43].
Despite promising, building machine-learning-based recognition models in real life is accompanied by time-
consuming and labor-exhausting processes [55]. For example, CrossSense [53] took 277 days to collect 1.2 million
WiFi data for learning a WiFi-based decision model, even when each data only took 20 seconds. In addition,
as we build recognition models for different RF sensors, the collection process will multiply significantly. The
conspicuous reason is that the recognition models of different sensors are isolated and independent from each
other. For instance, a recognition model trained on WiFi data can not be directly used to predict the label of radar
data. This is because different sensors have different operating frequency bands, bandwidths, and modulation
schemes, resulting in various data distributions between different sensors. When multiple RF sensors are deployed
on a large scale, the aforementioned drawback leads to an expensive and repetitive data collection process. While
collecting data from different sensors in a home may be feasible (only a few people, e.g., 3-5 users), requiring
each employee or visitor in a smart company to provide training samples for various sensors is impractical.

Recent research has attempted to reduce the cost of training data collection by utilizing video to generate
RF signals [1, 4]. Although these approaches work well for identifying simple whole-body activities (such as
gym sports), their performance will degrade for complex and fine-grained gesture recognition. The reasons are
as follows: 1) The accuracy of generated or transferred "pseudo” RF signals are unguaranteed since the video
does not contain complex and rich channel information (i.e., environmental information and dynamic variation
caused by human activities), but "real" RF signals collected from the real world do. 2) The diversity of generated
or transferred "pseudo” RF signals is limited, which can not cover the data distribution collected from the real
world, but "real" RF signals collected from the real world do.

In this paper, we ask the following question: Can we leverage the existing massive wireless signal data to
establish a new recognition model for other sensors with a small number of training samples? We propose an
affirmative answer through RF-CM, a general cross-modal human activity recognition framework. We investigate
the viability of cross-modal fine-grained HAR by taking WiFi and radar as examples. Since prior works in WiFi-
based HAR have extensively collected WiFi data for extensive activities and made it publicly available [51, 55],
WiFi thus is a good candidate as source data. Furthermore, as a dedicated RF sensor, the emerging millimeter wave
radar has larger bandwidth and higher resolution than WiFi. There is excellent potential for future deployment
in families to identify the fine-grained subtle human activities (e.g., hand gesture activities). By leveraging the
excellent knowledge from public WiFi datasets, RF-CM achieves a few-shot radar-based fine-grained HAR system.
The cross-modal capability of RF-CM significantly reduces the cost of radar data collection. As illustrated in
Fig. 1, RF-CM can work well regardless of the deployment setups of WiFi and mmWave radar, such as performing
environments, users’ characteristics, and device deployment. RF-CM opens up new possibilities for applications
across other sensors and provides a new view for deploying other new sensors rapidly in the future.

To realize our idea into practice, multiple challenges need to be addressed:

Establishing a high-accuracy radar sensing model with a small number of radar training samples is a challenge
in our system. Specifically, a few training samples will over-fit [48] the radar model since the feature space
distributions extracted from insufficient samples have a significant deviation. We attempt to break through the
over-fitting bottleneck by transferring the knowledge learned from massive WiFi datasets to the radar model.
However, WiFi and radar have different frequency bands, bandwidths, and modulation schemes, leading to the
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Fig. 1. Deployment settings of the WiFi and the mmWave radar.

various dimensions and distribution of WiFi data and radar data. Therefore, a fine-tuning strategy of transfer
learning [34] is ineffective since the fine-tuning radar samples and the WiFi data have the same dimension. One
potential way is to obtain the transformation matrix to scale the radar and WiFi data dimensions to ensure
consistency. However, searching for an effective transformation matrix is difficult as wireless transmission
channels are complicated.

Fortunately, implied information between WiFi and radar data provides a new angle to tackle this issue.
Specifically, although the differences in the dimensions and distributions of the data received by radar and WiFj,
the dynamic trajectory of the same activity is the same, and the relationship between different activities is
relatively stable. In other words, the classification probability distributions of WiFi and radar data are similar.
Therefore, by minimizing the difference in classification probability distributions between WiFi data and radar
data, we can transfer the knowledge from WiFi to radar. Our intuition is that the higher similarity between
two classification probability distributions indicates more knowledge radar learns from WiFi and the more
accurate the model’s prediction will be. To further improve the radar model’s generalization performance, we
tune WiFi data’s classification probability distributions to include more abundant knowledge, such as the relative
relationship between categories. When transferring knowledge to the radar model, the variety of knowledge is
equivalent to increasing the diversity of radar training set samples. The strategies can significantly decrease the
number of samples necessary for radar model training while improving generalization performance.

The second challenge is how to distill activity-related features and dispel activity-agonistic features from
different RF signals. RF signals usually carry redundant domain information irrelevant to human activities, such
as the surrounding environment, the user’s position, and the like. Variations in domain factors may distort
wireless signal patterns even with the same activity. In addition, radar data and WiFi data may have been collected
under completely different domain factors (i.e., different experimental settings, the environment, the user’s
characteristics, and the user’s location, as shown in Fig. 1). It makes extracting the relationships between two
domains’ signal patterns more challenging, especially when training samples are insufficient.

We overcome this challenge by designing data processing methods and feature extraction networks for different
RF signals. Specifically, interference elimination methods and feature pre-extraction to acquire the activity-related
features. These methods effectively suppress reflected signals of dynamic and static objects in the environment,
such as tables and walls, people walking around, and even the breathing and heartbeat of the user. Then, by
designing a deep-learning-based feature extraction network, we can dispel activity-irrelevant features from
different RF signals, thus obtaining activity-related features.

The main contributions of RF-CM can be summarized as follows.

e We propose a general cross-modal framework RF-CM. It enables a few-shot radar-based human activity
recognition model by using a large number of public WiFi data. RF-CM can achieve good performance
when the deployments and environments of radar and WiFi are different.
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ferent number of samples for training.

o We design a cross-modal strategy to effectively teach the radar model to maximize the information extracted
from limited training samples, significantly minimizing data collection cost.

o We evaluate the performance of RF-CM using two cross-modal applications, i.e., WiFi cross radar and WiFi
cross RFID. Extensive experiments demonstrate the effectiveness of RF-CM. While, the proposed method
can also benefit other wireless sensing modalities.

2 BACKGROUND

In this section, we first define the problem we aim to solve. Then we explain our motivation for tackling the issue.
Finally, we describe the data formats received by WiFi and mmWave radar.

2.1 Problem scope

RF-CM mainly concentrates on cross-modality sensing scenarios. We aim to build a few-shot human activity
recognition system for mmWave radar with the help of massive WiFi datasets. We here provide a general
description of the professional terms we used as follows: 1) domain: a specific deployment setup including domain
factors like sensing modalities, users, device setup, and deployment environment. A new domain emerges when
domain factors change. 2) cross-modality: It means that the RF sensors used for sensing in the source domain and
the target domain are different. 3) in-domain: domain factors in the training and testing sets are the same. 4) shot:
It refers to the number of labeled samples per gesture and per person. Although other domain factors of locally
collected radar data and public WiFi data differ, our work does not target finding better methods to eliminate the
influence of domain factors. Many efforts have been made to tackle this problem [20, 55].

2.2  Motivation

The analysis of the following three issues motivates us to explore whether we can utilize the public WiFi dataset
to assist in training the radar-based human activity recognition model.

2.2.1 Practical cross-modal RF sensing issue. Radio-Frequency (RF) sensing modalities such as RFID, WiFi, and
millimeter wave (mmWave) radar have been widely employed for human activity recognition (HAR) [17, 28].
Among these RF signals, the ability to capture micro-motion dynamics of subtle activities (e.g., hand activities
such as brushing, eating, etc.) makes millimeter wave (mmWave) radar a promising sensing approach for human
activity recognition. It offers many fine-grained sensing applications. Despite the satisfactory results, radar has no
existing large datasets, holding back this otherwise promising sensing modality. To develop a HAR model for radar,
a labor-intensive and time-consuming data recollection process is required. Since the existing machine-learned
solutions are designed for specific RF modalities. To be more intuitive, we imagine an example. As illustrated in
Fig. 1(a), we have already collected rich human activity data by deploying WiFi Access Point (AP) and client in
living room S2. When we want to deploy a radar in bedroom S3 for other family members, as in Fig. 1(b), we need
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to re-collect a large amount of data in the bedroom to train a sensing model for radar. The HAR model trained
on WiFi data in S2 can not support predicting the radar data since the data of WiFi and radar have different
dimensions and distributions.

2.2.2 Small sample issue. Inadequate training data may cause the trained model to perform well on training
samples but poorly generalized on the test dataset. To more intuitively understand the consequences of a small
sample set, we conducted an experiment. We invited a participant to perform 6 gestures in front of a mmWave
radar, with 10 samples for each gesture. We alter the ratio of training to testing samples. The recognition results
in Fig.2 indicate that the accuracy drops dramatically with fewer training samples due to poor generalization
performance.

2.2.3 Abundant publicly available RF sensing datasets. We investigated the literature on deep learning-based
contactless sensing using WiFi, RFID, mmWave radar, etc. We found that each study conducted extensive
experiments and collected a massive amount of data to confirm the proposed methods’ viability. We summarize
some public datasets of different modalities in Table 1. Most of these researchers collected tens of thousands
of samples and released their datasets on GitHub. HAR systems with WiFj, in particular, provide more activity
categories and samples. We appreciate the importance of these efforts, mainly the work done to make the dataset
publically available, which has opened an opportunity for academics to explore HAR in the future.

2.3  Primer

WiFi Channel State Information (CSI). The WiFi 802.11n protocol encodes digital data using OFDM on 64
subcarriers, 52 of which are used to transmit data. CSI depicts the combined impact of, for instance, scattering,
fading, and power degradation with distance as different frequency subcarriers travel from the transmitter to the
receiver. CSI measurements H represent the Channel Frequency Response (CFR) and are obtained by using the
received and transmitted known long training sequence (LTS) in the preamble of WiFi packets, which can be
represented as,

Y,
H =% 4 Noise (1)

X1Ts

where, X s and Yy s are the frequency domain representations of transmitted and received packets, respectively.
The measured CSI of each packet is a N X M X P three-dimensional matrix of complex values. N and M refer
to the number of transmitting and receiving antennas, respectively, and P denotes the number of subcarriers.
Abundant physical layer CSI reflects each subcarrier’s amplitude and phase variation over the transmission paths,
which can be used for human activity recognition.

mmWave radar. We take the most commonly used FMCW radar as an example for analysis. FMCW radar
sends and receives Frequency Modulated Continuous Wave (FMCW) with periodic linear frequency changes.
The transmitted signal is reflected by the target and returns to the receiver with a certain delay. In general, the
received signal is multiplied by the conjugate of the sent signal to produce an intermediate frequency signal that
is easy to process. We represent the IF signal as,

Sip(t) = Ae~J2m{for(O)+ptz () =37 (1)} (2)

where (1) = w, Ry is the distance from target to radar. y is the slope of the FMCW signal. IF data sampled
by ADC can be organized to a M X N X K X Q 4D matrix, where M, N, K, Q are the number of chirps per frame,
sampling points per chirp, receiving antennas, and frames collected at a time, respectively. To better show the
data processing, we take one frame of data (a M X N X K cube) as an example and visualize the processing in
Fig. 3.

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 7, No. 1, Article 35. Publication date: March 2023.



35:6 + Wangetal.

Raw Radar Cube Range Information Velocity Information Angle Information
g Doppler Angle 2
=3 FFT £ FFT =
x ]
2 —) P
= = =
e g g
= a
&)

v’o =——
Samples (N) Range Bins Range Bins Range Bins

Fig. 3. Processing of one frame of mmWave radar data.

i) Distance estimation: When the reflecting object is static, the sampled IF signal has a constant frequency
f= w. Therefore, by doing a fast Fourier Transform (FFT) on each chirp of the raw data cube, we can estimate
the range R according to the peak of the frequency spectrum. We call this process Range-FFT and denote each
FFT bin as a range bin.

ii) Velocity estimation: The movement of a human relative to radar will produce Doppler frequency shifts,
which results in each chirp having a different phase for the same range bin. Therefore, we can calculate the
velocity as v = 4/71r_ch based on the phase difference w of the same range bin across two consecutive chirps, where
T. is the interval of two chirps. The specific operation is to perform another FFT (Doppler-FFT) on each range
bin of the Range-FFT cube to generate a 2D Range-Doppler matrix for each antenna.

iii) Angle estimation: Estimating angle requires at least two receive antennas. The phase difference of two
antennas can be exploited to estimate the angle of arrival (AoA), which can be expressed as 6 = arcsin (%)

Where d and A¢ are the distance and phase difference between two antennas. It can be obtained by doing another
FFT (Angle-FFT) on the Range-Doppler matrix along the antenna dimension. For each Doppler bin, we can obtain
a 2D Range-Angle matrix.

3 SYSTEM OVERVIEW

RF-CM is a general cross-modal framework for radar-enabled few-shot human activity recognition. The core
idea of RF-CM is to leverage the knowledge from massive WiFi data to teach the radar model to achieve good
generalization performance with a few radar training samples. Fig.4 provides an overview of RF-CM, which
involves the following modules.

Data Collection. We select 38 American Sign Language (ASL) words from the datasets published by SignFi [29]
as our WiFi dataset. We collect radar samples for the 38 words by using a commercial radar sensor (Texas
Instruments (TT) IWR1843 [37]) in the real world.

Data Processing and feature pre-extraction artificially. Collected wireless signal data typically contain
reflections and noise from other objects (static and dynamic) in the surroundings. Therefore, to remove interfer-
ences from raw RF data, we apply a set of signal processing methods for WiFi and radar. Then, we deliberately
extract features that can represent the variation patterns induced by human activity according to the properties
of each signal. For different RF sensors, the preprocessing and dynamic feature extraction may be different. We
describe how they are handled separately in Sec. 5).

Knowledge transfer based HAR for mmWave radar. RF-CM framework consists of two pipelines: a pre-
trained WiFi-Net for assistance based on massive high-quality WiFi samples and a new radar-based model trained
with a few radar samples. Each pipeline has a Convolutional Neural Network (CNN) based feature extraction
network to extract deep representations of activities and a classification module to convert them into probability
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Fig. 4. Overview of RF-CM.

distribution of classes. We separately feed the WiFi and radar samples of the same category into two networks.
And we use the soft probability distributions generated by WiFi-Net as ’guide labels’ to ’teach’ the training of the
radar model. By doing so, the radar model’s generalization performance can be increased by learning valuable
knowledge from WiFi samples.

4 MODELING RF SENSING

In this section, we build theoretical reflection models for WiFi and mmWave to explore the relationship between

these wireless signals and human activities. It is the basis for our knowledge transfer based cross-modal HAR.
In an indoor environment, transmitted signals usually bounce off various objects, and these reflected copies

are intertwined at the receiver. The received signal is the superposition of signals from multiple paths, which can

be expressed as,
N

s() = D aip (t - 1) e? 3)
i=1
where p(t) is the signal from the transmitter. a; and 7; stand for the magnitude and the time of flight (ToF) of
the i arriving path, respectively. ¢ is a random phase shift caused by hardware imperfection, which is not a
time-varying value. We can get the channel frequency response (CFR) H(t) through s(t) dividing by p(t) in
frequency domain. It is the sum of all the static paths’ CFR H(t) and the dynamic paths’ CFR Hy(t).

Fig. 5 shows the general sensing deployments of the WiFi and mmWave radar. In order to make the movement
of the human relative to the transceiver consistent with WiFi, we assume that radar is deployed in front of the
human. The environment and multipath conditions of the two deployments are the same. At time ¢, the human
is in position A, and at time #; human moves to B. The displacement of At = t1 — 0 is d(At) = d(ty) — d(t1).
The change of signal transmission path length R(At) = (ry + ry) — (r] + r;) caused by human’s movement d(At).
Assuming that there are no other dynamic non-human objects in environments. Therefore, the H;(¢) mainly
depends on the dynamic changes caused by human behavior. Since the equipment and deployments for different
RF sensors are different, we next analyze their channels separately.

WiFi. As shown in Fig. 5 (a), for one pair of WiFi devices (an Access Point (AP) and a Client), the channel
frequency response contains three parts, which can be expressed as,

H(t) = Hy(t) + Hq(t) = Hap(t) + Hyy (1) + Har () 4
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Fig. 5. General human activity sensing models of WiFi and mmWave radar.

where Hg, (t) is the direct path (AP — Client), Hy,(t) is the static reflection path (AP — Walls — Client), and
Hy, (t) denotes the dynamic reflection path (AP — Human — Client). The CFR at t; and #; can be expressed as,
respectively,

Lt (sq+sp)+(r1+r3) L (sy+sp)+(r{+r9)

H(tO) = aOe_jZHf%,H(tl) = ale_ﬂ”f% (5)

where f is the frequency of carriers. By making the difference between the channels of two consecutive packets
.. . . e ior £ RAL
to and t;, we eliminate the static components and get the dynamic channel variation as, H(At) = e™/ 2nf =

The phase difference can be represented as,

R(At)

c

Ap =2rnf (6)

mmWave radar. mmWave radar transmits frequency modulated continuous wave (FMCW) and receives the
reflected signals from surroundings. As shown in Fig. 5 (b), the radar will not receive the static reflection path
(Radar— Walls — Radar) since radar usually uses directional antennas to reduce transmission loss and the wall
is behind the radar. Therefore, the received signal only has a dynamic path (Radar— Human — Radar). The
received IF signal at times #; and #; can be simplified as,

Srro = aoe_jZ”ﬁFO(t°)+¢<t°),SIFI — ale—ﬂﬂﬁF1(h)+¢(t1) 7)

where fipy = #ntry) and fir1 = M  is the slope of FMCW. The frequency difference of the IF signal

c c
generated by two consecutive frames is,

p(ri+ra—ri+ry))  pR(At)  pAd
Cc B Cc h c

Af =

Although the signals of the two sensors have different characteristics (e.g., frequencies, frequency bandwidths,
and modulation schemes) and A¢ of WiFi (Eq. 6)), and the A f of mmWave (Eq. 8) are all originate from the human
displacement d(At). In spite of differences in data dimensions and feature distributions, there is a correlation
between their signal patterns of the same activity.

®)
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5 SYSTEM DESIGN

In this section, we focus on how to realize radar-based human activity recognition with minimal training samples.
The lack of training samples prevents the neural network from obtaining the correct representation, which leads
to over-fitting. To solve it, our insight is to use the knowledge learned from public WiFi datasets to guide the
training of radar model. We first describe the problem formulation. Then we elaborate the system design of
RF-CM.

5.1 Problem Formulation

To be concrete, let Ds = {(xf, y?) }7:1 denote a WiFi dataset containing a large number of training samples, where

xis € R% is the i-th sample with ds-dimensional feature and yl.S € {1,...,K} representing the corresponding class
ny

label,ng refers to the size of WiFi dataset. Let Dy = D; U D,, = {(xﬁ, yf)}?zll U {(x?)}izl = {(XIT, le)}:lle denote a
radar dataset containing limited training samples D; and many test samples D,,, where xl.T € R is the i-th sample
with dr-dimensional feature and yiT € {1,2,...K}. ny = n; + n, are the number of labeled and unlabeled radar
samples. In our problem, D and Ds are datasets collected from different sensors, environments, participants,
ds # dr,ng > nr, and n,, > n;. We aim to use D; to build a general model for predicting the results of unlabeled
radar data D,,. Learning the knowledge learned from a large WiFi dataset Ds improves the classification accuracy
and generalization of the radar model.

Many domain adaptation methods [20, 53] cannot be used since they usually assume that the source and target
domain data are of the same dimension. Some methods [9] attempt to share the same network by transforming
the feature dimensions of the two domains into a common dimension d or mapping the feature dimension of the
target domain into the feature dimension of the source domain. The transformation functions are m; : R% — R?
and m; : R — R, or my, : R — RY. However, these methods all enforce an alignment between domains in
a brute-force manner, which may damage the discriminative information of both source and target domain data
due to the vast difference across domains. Different from them, we use the probability distributions generated by
WiFi samples to supervise the training of radar model. The details of each component will be described in the
following sections.

5.2 Signal processing and dynamic feature pre-extraction

A key challenge of contactless human activities recognition is that the received signal comprises information
about both the target’s activities and the surrounding environment (such as the reflected signal by the door,
wall, table, and other noise signals in the air). As a result, the change in spatial position between the target and
transceiver (distance and angle) can significantly alter the reflected signals even with the same activity. In real
applications, however, requiring users to complete activities in specific areas is impractical. Therefore, this section
aims to extract the activities-related features and suppress activities-irrelevant interference.

5.2.1 Feature selection. As described in Sec. 2, we can artificially pre-extract the dynamic features caused by
activities, such as range, velocity, and angle. Generally, the distance variation of sign language gestures is within
65 cm, the velocity is usually less than 3 m/s, and the horizontal angle variation is about 10°. According to the
detailed theoretical analysis of these three patterns provided in [31]), we select the most appropriate feature of
the variation patterns for activities. Specifically, the range resolution R,.s; depends on the bandwidth swept by
the chirp, which can be expressed as Ryes = 55. The velocity resolution of the radar is inversely proportional to
the duration of a frame and is given by vyes = zLTf The angle resolution is Oyes = m, which is related to the
number of antennas N and antenna separation d. For the parameter settings of TI-IWR 1843, the max theoretical
resolution of the range and angle are 3.75 cm and 15°, respectively. If we set the duration of a frame to 40ms, the
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Fig. 6. Range, Velocity and Angle features of Gesture "Sorry" and "Please".

velocity resolution can achieve 0.0487 m/s. We visualize the range, velocity, and angle features of two different
activities in Fig. 6. Comparing the three features, we choose the velocity feature in our system since its high
resolution can capture the subtle dynamic variation better, even the finger movements. Its superiority has been
demonstrated in the [41].

5.2.2  Feature pre-extraction and enhancement. We regard that the target’s position and hands do not change in a
chirp period since the duration of a chirp is usually very short, with a maximum of only tens of microseconds.
Therefore, we can obtain a M X N x Q X K 4D matrix by performing the 2D FFT ( namely Range-FFT and
Doppler-FFT, described in Sec. 2) on the sampled raw IF data cube for each receiver antenna and frame. To obtain
the Velocity-Time (VT) feature caused by human activities and enhance signal strength further, we perform
incoherent accumulation of the Range-Doppler matrix along multiple receive antennas and range bins. The final
Velocity-Time feature of one activity is a 2D matrix of M X Q. This incoherent accumulation makes the power of
useful signals stronger and the noise weaker since the noise is random. In addition, inspired by the spectrum
features extraction in speech recognition, we perform the logarithmic transformation on the magnitude of VT to
obtain XVelocity. This nonlinear transformation enhances the low-intensity but useful dynamic components.

5.2.3 Interference Signal removal. We take mmWave signals reflected by static objects near the target as static
interference, whose velocities are 0 and remain constant over successive frames. To remove these static interfer-
ences, we extract the differential Velocity-Time (DVT) feature by taking the difference of the Doppler dimension
of two consecutive frames. In addition, we define the reflected signals caused by the breathing and heartbeat of
the target as well as the non-target walking around as dynamic interferences, which have various frequencies
since their velocity relative to the transceiver is different. Specifically, the frequencies of the reflected signal
from breathing and heartbeat and people walking are typically 0.1-0.5 Hz, 0.8-2 Hz, and 1-10 Hz, respectively.
Empirically, a person usually performs an ASL gesture at a speed of less than 3m/s. The corresponding frequency
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is 1500 Hz (3m/s X 2/A). As a result, we apply a 10 Hz - 1.5 kHz band-pass filter to filter out these low-frequency
interference signals and high-frequency noise.

Algorithm 1 describes the detailed data processing and feature pre-extraction. To illustrate the effect of signal
processing, we visualize the velocity feature before and after performing our processing strategy. The result is
shown in Fig. 7. Fig. 7(a) and 7(b) indicate the log transformation is helpful to signal enhancement. From Fig. 7(b)
to 7(c), we can see that our interference cancellation method can remove the interfering signals, including the
target’s body with a large reflection area.

) Vellocity (m/s)
) \/ellocity (m/s)
. Vellocity (m/s)
) Vellocity (m/s)

1 2 1 2 1 2

Time (seconds) Time (seconds) Time (seconds) Time (seconds)

(@ (b) © (d

1 2

Fig. 7. The impact of signal processing on Velocity-Time feature. (a) Raw Velocity-Time with DC removal, (b) Velocity-Time
with log normalization, (c) Velocity-Time with both log normalization and differential interference cancellation, (d) Velocity-
Time with Differential interference cancellation but without log normalization.

ALGORITHM 1: mmWave radar data processing

Input: Radar cube xradar = M X N X Q X K (M:chirps; N:samples in one chirp; Q:frames; K:antennas)
Output: pre-processed differential Velocity-Time xpyr
1 fort=1t0Qdo

2 fori=1toK do
3 for j=1toMdo
4 ‘ Conduct Range-FFT with Hanning window on N samples within one chirp — XRange;
5 end
6 forn=1toN do
7 Remove DC — XRange (n) = XRange (n)-mean(XRange (n));
8 Conduct Doppler-FFT with Hanning window on M chirps of XRange (n) — Range-Doppler (RD);
9 end
10 Perform IIR Bandpass [10 Hz,1500 Hz] Filter on RD;
11 end
12 Incoherent accumulate the power of the RD — VT (t) = Zf( zﬁ)’ |RD |;
13 Feature enhancement — XVelocity (t) = logio (VT (t) );
14 Extract the differential feature — DVT (t) = XVelocity (t+1) - XVelocity (t);

15 end
16 xpyT = Normalization (DVT).

5.3 Base model

The base model contains two modules, a deep learning-based pattern extraction module and a classification
module.
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Fig. 8. Feature Extraction Network FE-Net.

5.3.1 Deep-learning based feature extraction. To learn the high-dimensional features of activities and reduce
gesture-irrelevant information, we design a residual network (ResNet) based feature extraction module (FE-Net).
As shown in Fig. 8, FE-Net is a stack of two types of residual blocks, Identity Block and Conv Block. Each
block adopts a residual architecture. The main path of each block contains 3 convolutional layers (Conv 2D). To
accelerate network training, batch normalization (BN) and ReLU activation layers are added between Conv 2D
layers. In Identity Block, the output is the superimposition of the input x and the output of the main path. This
block not only can learn the new features of the input but also the depth of the block is ignored, which ensures
that the network’s performance is not degraded. In Conv Block, the additional path is a Conv 2D layer and a BN
layer. Then add it to the main path and rectify it through the ReLU activation layer to get the output of the Conv
Block. We define the output of the radar’s feature extraction module as FET(xl.T).

The reason for choosing ResNet architecture is that it can deepen the feature extraction network to obtain
richer information and feature distribution. Meanwhile, the shortcut network protects the integrity of the
information, which can guide the network to learn the difference between them, thereby removing activity-
irrelevant information. Adopting multiple residual blocks is to derive deep-level representation concealed in the
input features.

5.3.2  Base activity classification module. FE-Net captures high-dimensional representations of samples that can
be used to classify. classification module contains fully connected (FC) and Dropout layers. We use the FC layers
to learn a linear or non-linear combination function of these high-dimensional representations. It is usually
followed by a softmax layer for getting the probability distribution of an input belonging to a particular class.
The softmax layer converts the inexplicable logits z; of each class output by FC layers into probabilities,

exp (zi)
2 exp (z)

where C(-) represents the output of the FC layers. We call Py 4 hard probability distribution. Higher logit scores
get higher probability values, and other low values give a minimal probability value close to 0. The class with the
highest probability is the predicted result for the input sample. The base classification loss is the cross entropy
(CE) between true labels y; and hard probability distribution as follows,

Phard = softmax(C(FET(x))) = (9)

Lhara = CE(Phard, y) (10)
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Fig. 9. Probability distribution of "slide" generated by classifier.

5.4 Knowledge transfer principle

However, base model training with small samples easily leads to the model over-fitting. The essence is that the
sample diversity in the training set is insufficient. The deep neural network cannot learn the deep correlation
characteristics of the samples. Thus, we leverage the knowledge from massive WiFi samples to increase the
generalization of the radar model. Section. 4 analyzes that the dynamics information implied in the signal
originates from human activities. It motivates us to leverage the intuition that the probability distributions
generated by a deep learning network for radar and WiFi samples of the same class are correlated. Therefore, we
take the probability distribution produced by the WiFi model’s softmax as the "guide labels’ for training the radar
model. Our basic method is to teach the radar model how to generalize, enabling the radar model to have greater
generalization performance with fewer samples.

Nonetheless, directly transferring general knowledge using the WiFi-generated hard probability distributions
as guide labels is ineffective. The reason is that the non-linear transformation softmax amplifies the difference
between logits, resulting in a loss of relevant information between classes in the probability distribution. We
take an example of recognizing 6 gestures, including "push”, "draw a circle”, "throw", "slide", "sweep" and "draw
zigzag". Fig. 9(a) shows the WiFi model generated hard probability distribution with a WiFi sample input. It has
the highest probability in the category "slide," and the probability of other categories are close to 0. The prediction
result is undoubted "slide". However, the information that the gesture "slide" is similar to "sweep" and least similar
to "push" is not reflected in hard probability distributions.

To tackle this issue, we leverage the idea of knowledge distillation (KD) [13] that was first proposed to compress
a large neural net into a small net. The effectiveness of KD has been demonstrated in computer vision [19, 47]
and text natural language processing (NLP) [38, 52]. We use the idea of distillation learning to extract more
generalization knowledge from WiFi data. We divide the original logits by a factor ¢ to get smoothed logits. We
call € smooth factor. Then we perform the softmax on the smoothed logits output by FC layers, which can be
expressed as,

exp (zi/¢)
%, exp (21/2)

We denote the acquired probability distribution as a soft probability distribution. Compared with a hard
probability distribution, it contains more information. For example, Fig. 9(b) and Fig. 9(c) are the soft probability
distributions generated by classification module for two different WiFi samples for the same gesture, respectively.
Although the probability of "slide" has dropped, it is still the highest, indicating that the prediction is correct.
Furthermore, we see that there is an increase in the probability of the gesture "sweep" and gesture "draw circle",
which indicates that the similarities of the gesture "slide" with "sweep" and "draw circle" are higher than other

Psoft = (11)
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gestures. Thus, using these diverse soft probability distributions generated by WiFi as guidance labels is more
helpful for the radar model to learn how to generalize.

Specifically, we use the 'guide labels’ produced by a pre-trained WiFi model to supervise the training of the
radar’s classification module. We denote the soft probability distributions for WiFi and radar samples as,

Ps‘;’;f; = softmax(C(FEs(x}))), Pﬁ)‘}df’ = softmax(C(FEr(x!))) (12)
where xl.S and xf are the WiFi and radar samples with the same true label. We adopt the similarity measure

function to estimate the difference between the Ps‘;};{;
(MSE) based on our multiple experimental comparisons with other metrics, such as Maximum Mean Discrepancy

(MMD), cosine similarity, and KL divergence. The corresponding soft loss can be defined as,

(xls) and Pﬁ)‘;ﬁlt“'(xf ). We finally chose the mean square error

Loof: = MSE(PRedar xf),P;:jfti(xf)). (13)

We aim to minimize the difference between the two distributions so that the knowledge of the WiFi is transferred
to the radar model.

5.5 Pre-trained WiFi-Net

5.5.1 Data Processing. One raw CSI trace in SignFi [29] is a complex matrix of 200 X 30 X 3, where "200" refers
to the number of sampling points, "30" refers to the number of subcarriers, and "3" refers to the three receiving
antennas. The sampling clock and the carrier frequency of the transmitter and receiver are not synchronized,
which results in sampling time offset (STO) and sampling frequency offset (SFO). Random phase shifts introduced
by STO and SFO make dynamic feature extraction difficult. To estimate and eliminate the phase offset, SignFi [29]
adopts the method of optimization to minimize the linear fitting error. After that, the pre-processed CSI phases
are unwrapped to recover the lost information. In addition, we extract the differential signal by calculating the
difference between two consecutive samples to remove the static clutter in the environment and further highlight
the dynamic patterns caused by the activities. Finally, we rearrange the complex matrix of 200 X 30 X 3 to a real
matrix of 200 X 60 X 3, where the first 30 values and the last 30 values are the magnitude and phase of the complex
values, respectively. Actually, we do not specify the feature used for training WiFi-Net. Any feature, such as
phase, amplitude, and doppler frequency shit (DFS), can be used in RF-CM. Therefore, even if we don’t know all
the specifics of a work’s processing methods, we may still use its published preprocessed datasets.

5.5.2 Feature Extraction Module. In our method, an excellent WiFi feature extraction network is necessary
since it determines what valuable knowledge WiFi-Net learns from WiFi datasets. We do not specify the feature
extraction network for WiFi. It could be the CNN network presented by SignFi or other designed deep neural
networks as long as they can extract good feature representations and have high accuracy. In our system, WiFi
uses the same network structure FE-Net with different hyperparameters as radar. We denote the output of the

WiFi feature extraction module as FEs(x3), where x5 is one WiFi sample.

5.5.3 Classification Module. WiFi’s classification module contains 2 FC layers and a softmax activation layer. Its
classifier training loss is the cross entropy (CE) loss function as follows,

Lwiri = CE(softmax(C(FEs(x;))), y5) (14)

5.6 End-to-end few-shot radar model

To conclude, the total loss of our end-to-end radar model KT-Net is the weighted sum of hard classification loss
and soft classification loss, which can be described as,

Lt = alpara + ,BLsoft (15)
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Fig. 10. The training and testing flow of RF-CM. In the training stage, (a) pre-train the WiFi-Net with WiFi datasets. (b)
Input a corresponding WiFi sample to WiFi-Net to generate the soft probability distribution 2. (c) Forward propagate the
radar samples through FE-Net and two FC layers. (d1) Input the result to softmax layer to generate the hard probability
distribution. (d2) Generate soft probability distribution 1 by dividing a factor ¢ and inputting it into the softmax layer. (e)
combine the hard loss and soft loss with weights. In the test stage, (f) input the test sample to obtain the predicted label.

where o and f8 are trade-off weights to balance the importance between Lyg,q and Ly, ;. We train the end-to-end
network by minimizing L. In this way, we can transfer valuable knowledge from WiFi to radar by fine-tuning
the radar network with guide labels, making the KT-Net perform well with a small number of radar samples.

5.7 Pipeline Summary

We now summarize the entire pipeline of RF-CM as shown in Fig. 10. Initially, we train a good recognition model
WiFi-Net on the public labeled WiFi sample set Ds in advance. At the training phase of the radar model, each
labeled radar sample xl{ , is paired with a random WiFi sample x;, having the same activity label Y (One-Hot
encoded). The WiFi sample x3 passing through a WiFi-Net will generate a soft probability distribution Ps;. We use
it as the guide label. In the same way, the corresponding radar sample xf generates a soft probability distribution
Psf and a hard probability distribution th. Finally, KT-Net is trained by minimizing loss function Lt. One is
the similarity between Ps; and Ps!, and the other is the cross entropy of Ph! and Y. At the testing stage, only
unlabeled radar samples x; need to be input, and the final predicted results are decided on the hard probability
distribution.

6 EXPERIMENT

In this section, we evaluate the performance of the proposed RF-CM. We first demonstrate the effectiveness of
WiFi cross mmWave radar by realizing a radar-based American Sign Language (ASL) recognition system with the
help of public WiFi datasets. In addition, to demonstrate the universality of RF-CM cross to other RF signals, we
implement an RFID-based coarse-grained gesture recognition system to verify the feasibility of WiFi cross RFID.
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Table 2. The ASL Words Dataset.

Category Words

pronoun who, my, you, what, your

noun time, drink, food, year, mother, family, book, boy, car, bicycle
verb help, want, like, need, finish

adjective cold, old, black, green, black, white, red, gray, nice, hot, sad, sorry, with, without, bad
adverb where, please, more

6.1 Implementation

Since it is difficult to gather all words in the ASL vocabulary, we concentrate on a small part of ASL words that
are commonly used in each category. We chose specifically 38 ASL words from the pronoun, noun, verb, adjective,
and adverb categories, as shown in Table 2.

WiFi sensing data collection and pre-trained WiFi-Net. The WiFi dataset was chosen based on the assumption
that there is only one pair of WiFi AP and client (not specifying device locations). We use the public dataset of
SignFi [29] for training an ASL recognition network in advance. The dataset includes CSI traces of 276 sign words.
Thereinto, there are 5520 instances collected from the lab and 2760 instances from home. For pre-training WiFi-
Net, we selected 760 samples of the 38 words listed in Table 2 from the lab environment dataset (by default). The
reason is that the recognition accuracy of mixing the two datasets is lower than that of one of the environments,
just like the result reported by SignFi. We used 80% and 20% of WiFi data for the training and testing of WiFi-Net
respectively, and obtained an average recognition accuracy of 97.638%.

mmWave sensing data collection. The data collection of mmWave radar is built on a mmWave radar sensor
chip (Texas Instruments TI-IWR1843 [37]) with 3 sending antennas and 4 receiving antennas. The sensor is set to
transmit an FMCW signal with a bandwidth of 4 GHz (77 GHz-81 GHz) and a 100 MHz/us slope. 130 frames are
sent each time, and each frame contains 255 chirps. We set sampling points per chirp to 80. As for the receiver,
we set the sample rate to 2.499 MHz. Table 3 summarizes the amount of data collected in three scenarios, namely
the hall, the home, and the laboratory, as shown in Fig.11. The impact factors experiments are conducted in the
hall, where positions 1-3 have different distances of 140 cm, 180 cm, and 220 cm, respectively, and positions 1
and 4-7 have angle intervals of 20°. We use Dataset 1 for the overall performance and verification of modules.
Dataset 2-4 are used to evaluate robustness.

Platform for data processing and recognition. The data processing coded in Python runs on a computer
(Intel i5-10400F CPU @ 2.90 GHz, 32 GB memory). The model training is conducted with Keras library (Python
3.7) on a server with GeForce RTX 2080 Ti GPU.

Hyperparameters declaration and sample selection strategy. In our training process, we employ 500
iterations (epochs) to train the network using the "rmsprop" optimizer with an initial learning rate of 0.01. We
set the batch size to 16. That is, each iteration involves 16 radar and 16 WiFi samples. Specifically, we first loop
through each radar sample from the radar training set ( 76 samples, assumpting 2 samples per gesture are used
for training) and each WiFi sample with the same label from the WiFi training set (760 samples). Thus, after
48 iterations, we can traverse all the radar and WiFi samples. Then, to ensure the trained radar model has a
good generalization, we randomly choose 16 radar samples from the radar training set and corresponding WiFi
samples with the same label from the WiFi training set in each subsequent iteration. Finally, the training process
is complete when the number of iterations arrives at 500. The accuracy of the validation data set no longer rises
after the 450th epoch usually. This strategy can help the trained radar model has a good generalization.
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Fig. 11. Experimental environments.
Table 3. Summary of radar dataset.
Evaluation Data Samples Collection

Overall Performance (Dataset 1)

Default Scenario: Hall, Radar-user 1.4m, Angle 0°, 10 Users x 38 Signs x 10 Instances=3800 Samples

3 Environments (Dataset 2)
System Robustness
3 Distances (Dataset 3)

5 Angles (Dataset 4)

1. Hall: 2 Users x 9 Signs x 15 Instances = 270 Samples
2. Home: 2 Users x 9 Signs x 15 Instances = 270 Samples
3. Laboratory: 2 Users x 9 Signs x 15 Instances = 270 Samples

140cm/180cm/220cm: 3 Distances x 2 Usersx 9 Signs x 15 Instances = 810 Samples

-40°/-20°/0°/20°/40°: 5 Angles x 2 Usersx 9 Signs x 15 Instances = 1350 Samples

Baseline. In our comparisons, we take the base model that trains without the help of WiFi as the baseline. It
contains the feature extraction module FE-Net and the base classification module with hard classification loss.

6.2 Overall Performance.

We evaluate the overall performance of RF-CM on Dataset 1. Specifically, we select 20% and 80% of each
participant’s radar samples as training and testing sets. Fig. 12 shows the confusion matrix of 38 ASL words
across 10 participants. We can see that RF-CM achieves an average recognition accuracy of 83.19% when each
participant performs two shots per ASL word for training. Compared with baseline (72.24%), RF-CM has a
about 11% recognition accuracy improvement. The results demonstrate that RF-CM can effectively transfer the
knowledge from the WiFi dataset to the radar model.

6.3 The Necessity of model components

To assess the efficacy of RF-CM’s key components, we run the following benchmarks on Dataset 1.

Verification of feature extraction network FE-Net. We compare the recognition performance of our FE-Net
with three networks, i) the 3-layer 2D CNN presented by IMU2Doppler (each CNN unit consists of a Convolutional
layer, a Batch Normalization layer, and a Max Pooling layer); ii) CNN+LSTM, a 1-layer CNN and 2 Long Short
Term Memory (LSTM, Units: [128, 256]); iii) CNN+Bi-LSTM, a 1-layer CNN and a bidirectional LSTM (Bi-LSTM,
Units: [128]). In addition, we examine the performance of these networks on two different sample sizes. To make
a fair comparison, we use the same training set and test set.
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Fig. 12. Confusion matrix of 38 ASL word across 10 participants using only 2-shot per gesture.

Fig. 13(a) shows the recognition accuracy of these four networks trained with 8 shots and 2 shots per gesture.
When we employ 8 shots, our proposed FE-Net outperforms the other three comparison models with an accuracy
of over 96.5%. The feature extraction network proposed by IMU2Dopller [3] has an accuracy of 76.31%, which is
higher than CNN+LSTM (72.895%) and CNN+Bi-LSTM (62.237%). However, when the training sample decreases
to 2 shots, the recognition accuracy of all networks declines dramatically. The reductions of these four networks
are 24.26%, 37.50%, 36.81%, and 37.90%, respectively. The reason is that the classification error of samples outside
the training set will rise due to over-fitting if the training sample size is too small. Nevertheless, the amount
of FE-Net drop is less than others, demonstrating the advantage of FE-Net in the case of a small sample size.
Fig. 13(b) shows their respective training parameters are 857510, 5214758, 2181542, and 2182054. FE-Net has
significantly fewer parameters than others.

Verification of the knowledge transfer network KT-Net. We compare our KT-Net with i) baseline and
ii) FE-Net with the knowledge transfer method proposed by IMU2doppler [3]. IMU2Doppler adopts domain
adaptation approach by decreasing the domain discrepancy between the latent representation of IMU and radar.
In particular, IMU2Doppler minimizes the output of the second-last fully connected layer, which has an identical
configuration in both the pre-trained IMU model and to be trained radar model. The ratio of the loss function
used in IMU2Doppler is the one with the best performance that we have determined through many experiments.
The comparison results in Fig. 14 indicate that KT-Net has superior performance than baseline and IMU2Doppler
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Table 4. The results for different values of smooth factor ¢ and loss coefficients (a, ).

Recognition Accuracy (Improvement)

(a, ) £=2 £=3 c=4 £=5 €=6 ¢€=7 €=8 =9 =10
(0.5, 1.5) 81.45 82.93 (10.69) 79.97 81.88 80.89 81.32 81.12 80.07 80.26
(0.7, 1.3) 82.53 83.68 (11.44) 83.45(11.21) 82.53 81.58 80.92 80.86 82.01 82.20

(1, 1) 82.83(10.59)  82.73 (10.49) 80.95 82.50 82.24 8234 80.79 81.61 81.84

for fewer training samples. For example, when 2 shots per ASL word are used for training, the baseline and
IMU2Doppler obtained 72.24% and 73.65% respectively, while KT-Net can achieve an accuracy of 83.19%. Compared
with the baseline, the improvement of IMU2Doppler is limited, even decreasing at times. This might be because
when the wireless signal is used as the source domain, the latent feature representation learned by the model
cannot deliver the correct knowledge to the target model. Furthermore, we can see that compared with the
baseline, the improvement of the recognition accuracy of KT-Net and IMU2Doppler becomes smaller as the
number of samples rises. For example, the accuracy improvement of KT-Net is 10% with 1 shot for training, while
the improvement decreases to 4.5% when model training with 6 shots. This is because that with more samples,
the generalization performance of the baseline method will become better.

Dependence on public WiFi dataset deployment. We retrain a new WiFi-Net using another dataset of SignFi
collected from the home environment. Its accuracy is 98.01%. And then, we retrain a new radar model using the
soft probability distribution generated by the new WiFi-Net on this home dataset as guiding labels. We compare
the recognition accuracy of the new radar model with the original model, which uses the same radar dataset.
As shown in Fig. 15, the recognition accuracy of the two models is similar, and the gap is about 0.1% to 2.43%.
This is in line with the theory that we focused on the accuracy of the WiFi pre-trained model and paid little
attention to the deployment of WiFi dataset acquisition. This is because we only require the WiFi data to provide
the probability distributions of categories generated through the network. Therefore, the deployment of public
WiFi datasets can be varied as long as their feature extraction and classification accuracy are good enough.

6.4 The impact of different hyperparameters on generalizability.

Smooth factor ¢ and loss coefficient. ¢ affects the diversity of soft probability distributions and the value of
indicates how much WiFi contributes to the radar model. We change ¢ from 2 to 10 and choose three ratios of
hard loss and soft loss (, f§). The result is shown in Table 4. According to the result, we choose the values of
(@, p) = (0.7,1.3) and & = 3 which can produce the best recognition accuracy.
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Dropout probability. The dropout layer is used to prevent overfitting. We set the dropout probability from 0.1
to 0.7 to train and test the radar model and baseline. The comparison results in Fig. 16 show the performance of
our system almost does not suffer when the dropout probability is between 0.1 and 0.5, however, the recognition
accuracy of the baseline degrades significantly as the dropout probability increases.

Batch size. We set the batch size to 8/16/32/64 to verify the impact of batch size on the model’s generalization
performance. Fig. 17 illustrates that the batch size has little effect on the generalization performance of the radar
model and baseline.

6.5 Robustness of RF-CM in the field

To examine the robustness of RF-CM, we use the datasets collected under different domain factors (experimental
environments and user positions, described in Sec. 6.1). User position contains two factors: the distance and angle
between the user and the radar. Note that we guarantee that all other factors are the same when evaluating each
domain factor. We use the leave-one-subject-out cross-validation protocol to evaluate the robustness. Specifically,
we choose 2 samples per word and user from each domain for training, 2 samples per word for validation, and
the rest for testing. We explain the legend used in Fig. 18 in advance. We denote 'Baseline in’ and *Ours in’ as the
accuracy given by baseline and RF-CM when the training and testing samples are in the same domain. we denote
the corresponding accuracy given by baseline and RF-CM as "Baseline cross’ and > Ours cross’ when training and
testing samples are from different domains. For example, we train a recognition network by using the samples
collected in the hall environment and then test it with the data from home. We denote this case as 'Baseline/Ours
Cross’.

Impact of environment: We use Dataset 2 to evaluate the performance of RF-CM cross-environment case. The
three environments and devices deployment are shown in Fig. 11. The participants stand right in front of the
radar with a distance of 140 cm and relative orientation of 0°. We train RF-CM model and base model in one
environment (hall) and predict the radar samples collected in another environment (e.g., home and laboratory).
Fig. 18 (a) reports the in-domain and cross-environment performance comparison of baseline and RF-CM. When
both training samples and test samples are from hall, the results of baseline and RF-CM are 80.55% and 85%, and
when the network trained by the other two environment samples is tested with hall’s samples, the accuracy are
65% and 71.66%, respectively, which is a decrease of about 14%. The analysis of the results in other environments
is the same as in the hall. Compared with in-domain, RF-CM-Cross accuracy of home and office decreases by
about 4%. However, the accuracy of RF-CM-Cross in the hall reduces dramatically. The reason is that performance
of the network trained by samples in home and office is relatively poor since the two environments have more
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Fig. 18. The cross-domain performance of RF-CM.

complex transmission channels. It is worth noting that although the cross-environment accuracy of RF-CM drops,
it is still higher than the baseline.

Fig. 19 shows the cross-environment accuracy of RF-CM decreases compared to the in-domain where the test
environment is the same as the training environment (hall). To solve this issue, we can employ the Continual
Learning framework [5] to improve the performance. Specifically, when a trained radar model needs to be used
in a new environment, we can use a small number of new samples to fine-tune the network to adapt to the new
environment. To prove the feasibility of this method, we train a radar model using Hall’s data in Table 3, 20% of
which was used for training and 80% for testing. When we test this model directly with the home environment
data, the accuracy is only 72.93%. Next, we froze the feature extraction layers of the radar model and retrained
the model’s classifier with a small amount of home environment samples. The result is shown in Fig. 20. We
can see that the accuracy increases with the number of samples used for fine-tuning. The accuracy achieves
82.134% when fine-tuning the network with 2-shot. As recognition models are applied in a new environment,
more sensing data can be used for model fine-tuning. Therefore, this approach is feasible and worth further
exploration.

Impact of the distance between user and radar: We use Dataset 3 to evaluate the performance of RF-CM
in the cross-distance case. This experiment was conducted in the hall and the angle between participants and
radar remains 0°unchanged. Participants perform gestures at three distances, 140 cm/180 ¢cm/220 cm. Fig. 18 (b)
shows the cross-distance accuracy of both baseline and RF-CM are reduced by an average of 15% (compared with
in-domain). The reason is that the change in the relative distance between the participants and radar causes the
signal strength to become weaker.

Impact of user’s orientation: We use Dataset 4 to evaluate the performance of RF-CM in a cross-user-
orientation case. This experiment was conducted in the hall and the distance between participants and the radar
was kept 140 cm unchanged. The participants perform gestures at five positions at 20-degree intervals in the
range of —40° to 40°. The results in Fig. 18 (c) indicate that the cross-angle robustness of baseline and RF-CM is
poor as the accuracy drops significantly when testing the model trained on samples from other angles, whether
it is the baseline or RF-CM. The reason is features of the same gesture under different orientations of users vary
significantly and fail to support successful recognition.

6.6 Extensibility verification of KT-Net

We next assess the generalizability of KT-Net adaption to other sensors-based applications. We realize an RFID-
based coarse-grained gesture recognition system with WiFi’s help. Neural networks for RFID and WiFi are
the same but with different parameters. The feature extraction module contains a Convolutional layer, a Batch
Normalisation layer, and a Max Pooling layer. Two fully-connected layers (Units: 128, 6) and a softmax activation
were added at the end of the model for classification. We use the cross entropy loss function to optimize the
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outputs of the final layer with the Adam optimizer (Learning Rate: 0.001, coupled with a learning rate decay of
0.1).

6.6.1 Datasets description. We used the WiFi and RFID datasets published by RISE [51]. They were collected in a
controlled environment using a robotic arm to perform 6 Gestures. With both sets of devices, each gesture was
performed 30 times for a total of 180 samples. WiFi devices have 3 transmit antennas and 3 receive antennas
respectively. The sample rate was set to 1 kHz, and data collection of each gesture lasts for 8 s. Thus, the size
of each original sample is 8000 X 3 X 3 X 30. The reader and RFID tags are placed at the location of the WiFi
transmitter and receiver, respectively. There are 3 tags placed at intervals. For each gesture, the reader receives
40 responses from each tag, corresponding to 40 amplitude and phase values.

6.6.2 Data Processing.

WiFi data processing. We first intercept the signal segment with dynamic changes through the threshold method,
and then adopt the 3-100 Hz Bartworth band-pass filter to filter out high-frequency noise and low-frequency
interference signals. Then, since the sample rate is much higher than the rate of gesture change (< 100 Hz), so
we downsample the signal to reduce the size of one sample while keeping the dynamic characteristics of the
gesture. Finally, the differential signal is used to eliminate the reflected signal of the static object so that only
the dynamic signal changes caused by the gesture are retained. In this work, we perform the above processing
operations on the data from one transmit antenna and extract the amplitude of CSI as the feature of each gesture.
The size of each sample after processing is 365 X 30 X 3.

RFID signal processing. We first smooth the raw phase and amplitude by using a median filter to remove
outliers caused by the sudden noise. And then we calculate the difference between two consecutive phase values
and amplitude values. Finally, we combine the differential phase and amplitude values sampled during a gesture
into a column, namely 80 X 1. The received data from three tags were combined to build up a sample with a
dimension of 80 X 1 X 3.

6.6.3  Performance. Firstly, we trained the feature extractor and classifier using 80% of the WiFi data and obtained
an average classification accuracy of 97.2%. Then we train a feature extraction network and classifier with 80%
of the RFID samples, which is the baseline shown in the following results. Finally, we use the soft probability
distribution obtained from WiFi samples as the label to guide the training of further refinement of the RFID
model. Fig. 21 shows the confusion matrices of the baseline and RF-CM. Compared to the baseline, the average
accuracy improved by 14% with the help of WiFi.

Impact of the position of robotic arm. S1-S3 in the dataset [51] refer to the locations where the gestures were
performed by a robotic arm. We use them to verify the robustness of RF-CM cross-user-position. The network
was trained on the premise that one shot per gesture was used as training set. As shown in Fig. 22, when the
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Table 5. The 1-shot results for different values of Loss coefficients (a, f) and ¢.

Recognition Accuracy (Improvement)

Loss =2 =3 £=4 £=5 £=6 e=7 =8 =9 =10
(0.5,1.5) 70.83(8.80)  68.33(6.30)  69.17 (7.13) 68.33(6.30)  63.17(1.13)  62.33(0.30) 74.83 (12.80) 7150 (9.46)  65.50 (3.46)
0.7, 1.3)  62.83(0.80)  72.67 (10.63)  63.50 (1.46)  68.50 (6.46) 72.73(10.70)  71.33(9.30)  73.33 (11.30)  68.83 (6.80)  66.50 (4.46)

(1,1) 67.67 (5.63)  74.50 (12.46)  66.33 (4.30)  69.17 (7.13) 66.83 (4.80) 67.83 (5.80)  75.00 (12.96)  70.00 (7.96)  69.67 (7.63)

training samples and the test samples are both from S1, the in-domain accuracy of baseline and RF-CM are 53.67%
and 78.83%. When the network trained in S1 was tested using the other two environmental samples, the results
of baseline and RF-CM cross-domain are 51.60% and 68.75%, respectively. The analysis in S2 and S3 is the same
as that in S1. Although the recognition accuracy of cross-position RF-CM decreases, it is still higher than the
baseline.

Effect of different parameters. To examine the optimal parameters, we run lots of experiments on various
parameter settings (¢ and loss ratio (e, §)). We change the smooth factor ¢ from 2 to 10 and choose three ratios of
hard loss and soft loss («, f§). Table 5 shows that the («, ) = (1,1) and € = 8 produce the best-performing recognizer.
In addition, these two parameters also need to be adjusted when using different training set sizes. It is worth
noting that the best values chosen in this case study are not necessarily valid in sec. 6.2. We take designing a
method of dynamically changing these values as our future work.

7 DISCUSSION

RF-CM is the first attempt to investigate the viability of leveraging freely accessible WiFi data to support
other novel sensors to construct HAR systems. Naturally, there is still much space for future work and further
improvement. We discuss a few points here.

Limited recognition accuracy for real applications. Our results show that knowledge transfer can assist
develop a radar model with limited training samples. Towards two-shot training, our method recognizes 38
sign language words with an average accuracy of 83.19% (compared to 72.24% with baseline). This precision is
unsatisfactory right out of the box. However, we believe that alternative measures, such as data augmentation
and adaption approaches, can be employed to increase accuracy.

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 7, No. 1, Article 35. Publication date: March 2023.



35:24 + Wangetal.

Limited robustness of cross-domain. We evaluate the system’s robustness by changing the environment,
user position, and angle. Although the result is superior to the baseline, the recognition accuracy drops significantly
when the domain factor is altered. Especially in the cross-user-orientation case, the accuracy plummets when we
use data from a specific angle to test a model trained on data from other angles. Nevertheless, we can manually
analyze the original data and extract features unrelated to these domain factors like widar3.0 [55], improving the
system’s robustness across domains in the future.

Strongly reliant on the WiFi. A fundamental limitation of our approach is that our work is data- and
network-dependent on WiFi. Such approaches typically require a good enough’ WiFi model that can provide
the target model with accurate knowledge. Therefore, designing an excellent feature extraction network and
classifier for WiFi data is critical. Additionally, the quality of WiFi data significantly impacts knowledge transfer
performance. The recognition accuracy of pre-trained WiFi-Net in our system is greater than 97%. In the future,
we may construct the network with dynamic parameters ¢ and loss ratio («, f§), allowing us to find acceptable
values for altering the guide label’s contribution dynamically in the target model according to the WiFi sample
quality.

The limitation of low-resolution WiFi data. Due to the lower resolution, the WiFi data cannot fully reveal
the details captured by mmWave radar data. Thus, there exists a possible degradation of data quality (and thus
model quality) when transferring from WiFi to RF. However, our work aims to reduce the collection cost of
radar samples required by radar model training. The key to enabling our goal is to transfer the sample diversity
information of the massive WiFi datasets to the radar model to achieve a generalization performance comparable
to training the model with lots of radar samples. In the future, we can use the incremental learning framework [2]
to update the pre-trained network with newly collected mmWave samples to improve the radar model’s accuracy.

The applicability of the methodology to other cross-modality transfer. Although we only focus on the
cross-modality transfer between different RF technologies, such as WiFi cross Radar and WiFi cross RFID, in this
work, we believe our method can be applied to more sensors, e.g., IMU cross mmWave. This is because the key
enabler of our methodology is to use knowledge distillation from one modality to help another. In addition, our
methodology can be used in different domains, such as medical imaging applications. For example, we can employ
our methodology to distill knowledge from a mass of imaging data obtained by a low-resolution technology
and transfer the distilled knowledge to help high-resolution technology quickly identify images with a lower
collecting effort.

8 RELATED WORK

In this section, we will discuss the related studies in RF-enabled human activity recognition and cross-domain
research.

8.1 RF-based human activity recognition.

RF sensing is an attractive solution for HAR as it neither requires the user to carry the device nor does it have
the privacy concerns of cameras and sound.

WiFi-based HAR. WiFi has become a powerful technique for wireless sensing.[29, 33, 39, 42, 54] were designed to
extract channel state information (CSI) from WiFi packets and recognize motions of the human body. Wisign [54]
recognizes continuous sentence-level ASL rather than separate words via Wifi signals. FingerDraw [42] realized
the first sub-wavelength level finger motion tracking system using commodity WiFi devices without attaching
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any sensor to fingers. GoPose [33] presented a 3D skeleton-based human pose estimation system. WifiU [39]
captured fine-grained gait patterns to recognize humans.

Millimeter wave based HAR. Millimeter wave radar has been widely used in wireless sensing applications [16,
18, 35, 36, 40] due to its wide bandwidth and high resolution. [23] and [30] use point cloud information extracted
by commercial millimeter-wave radar to recognize gestures. [25] uses millimeter-wave radar to realize a real-time
user-independent gesture recognition system. It extracts the unique characteristics of every gesture and proposes
a neural network to build a compact model to inhibit individual differences between different users, which does
not require additional radar data collection and retraining. mHomeGes [24] proposed a real-time mmWave arm
gesture recognition system for practical smart home usage. m3Track [15] realized a mmWave-based multi-user
3D posture tracking system.

8.2 Cross-domain human activity recognition

CrossGR [20] extracts user-agnostic but gesture-related WiFi signal features to realize cross-target gesture
recognition system. [10] designs a position-independent feature MNP which captures the pattern of moving
direction changes of hand to achieve cross-position gesture recognition. Widar3.0 [55] achieves a zero-effort
cross-domain gesture recognition system by using the unique velocity profile of gestures. CrossSense [53] adopts
transfer learning to achieve cross-site sensing. These systems are all supposed to employ the same RF sensor and
only investigate changing one or more domain factors in the user, location, and environment, but none of them
consider sensing scenarios across various sensing modalities. TARF [45] designs a technology-agnostic network
for RF-based HAR by proposing a novel data generation technique to reduce differences in measurements from
different RF devices. IMU2Doppler [3] leverages the enormous IMU public dataset to assist mmWave in developing
an activity recognition model. Nevertheless, the IMU-assisted RF training model has lower recognition accuracy
than our method. This is because the sampling rate of the IMU is usually lower than that of the RF sensors. Based
on the last work [46], a signal with a lower sampling rate can degrade the sensing performance. Therefore, it could
lose some information when using the IMU data to cross RF data. [4] converts already-available online videos to
RF data for training RF-enabled HAR, which significantly reduces the cost of RF data acquisition. However, the
method may be suitable for large-amplitude activities like sports, but for gesture recognition, the recognition
accuracy will be decreased since complex interference factors in actual wireless transmission are removed from
the transform model. Different from the above-related works, in this paper, RF-CM aims to build a few-shot HAR
model for a new sensor by leveraging the large sample from other sensors. It is a general cross-modal framework
for human activity recognition and can be extended to multiple sensing modalities. RF-CM can use more public
datasets as the source domain regardless of data features, which benefits from that it has no restrictions on the
processing methods and feature extraction models of both sensors.

9 CONCLUSION

We have presented RF-CM, a novel cross-modal human activity recognition system. RF-CM aims to significantly
reduce the overhead of collecting training data across modalities. RF-CM applies a series of signal processing
schemes to dispel the activity-agnostic features. It then uses a neural network to further extract the activity-related
features for WiFi and radar data, respectively. RF-CM leverages the generalization knowledge from massive
WiFi data to teach the radar model to maximize the information extracted from limited radar training samples
during deployment. We demonstrate the effectiveness of RF-CM by applying it to 2 representative human activity
recognition systems (i.e., WiFi-cross-radar and WiFi-cross-RFID). Our extensive evaluation illustrates that RF-CM
has good expansibility for supporting fine-grained (i.e., American sign language) and coarse-grained (i.e., gesture)
cross-modal applications. The result demonstrates that RF-CM is a new low-cost approach for cross-modal human
activity recognition with high accuracy.
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