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Abstract—Target material identification is playing an impor-
tant role in our everyday life. Traditional camera and video-
based methods bring in severe privacy concerns. In the last few
years, while RF signals have been exploited for localization,
activity tracking and even respiration, very little attention has
been paid in material identification. This paper introduces
WiMi, a non-contact target material identification system,
implemented on ubiquitous and cheap commercial off-the-shelf
(COTS) Wi-Fi devices. The intuition is that different materials
produce different amounts of phase and amplitude changes
when a target appears on the line-of-sight (LoS) of a radio
frequency (RF) link. However, due to multipath and hardware
imperfection, the measured phase and amplitude of the channel
state information (CSI) are very noisy. We thus present CSI
pre-processing schemes to address the multipath and hardware
noise issues before they can be used for material sensing.
We also design a new material feature which is only related
to the material type and is independent of the target size.
Comprehensive real-life experiments demonstrate that WiMi
can achieve fine-grained material identification with cheap
commodity Wi-Fi devices. WiMi can identify 10 commonly seen
liquids at an overall accuracy higher than 95% with strong
multipath indoors. Even for very similar items such as Pepsi
and Coke, WiMi can still differentiate them at a high accuracy.
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I. INTRODUCTION

Target material identification plays an important role in

many IoT applications. At the airport, explosive detection

is critical at the security checkpoint [1]. With material

identification, a robot can smartly reduce its strength when

picking up a fragile item such as an egg [2]. Fine-grained

material identification can even be applied to differentiate

very similar items such as Pepsi and Coke without a taste [3].

With fine-grained material sensing, expired liquid such as

milk can be detected without requiring to open the bottle or

taste it.

Existing material identification systems such as Radar [4],

X-Ray [5], CT/MRI [6] and B-scan ultrasonography [7]

utilize dedicated hardware to emit extremely high frequency

signals. Although they can provide a high identification

accuracy, these systems are usually big in size and expensive

to be used in home and office environments. Camera based

material identification techniques have been proposed [8, 9].

However, camera based approaches rely on good lighting

conditions and bring in severe privacy concerns. Recently,

we have witnessed a new trend of employing radio fre-
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Figure 1: Example application of WiMi.

quency (RF) signals such as Wi-Fi and millimeter wave

signals for localization [10–12], gesture recognition [13, 14],

and motion tracking [15]. Wi-Fi infrastructure is already

ubiquitously deployed around us while millimeter wave may

be employed in the next generation 802.11 Wi-Fi standard.

However, we notice that very little attention has been paid

to material identification with RF signals.

Recently, two material sensing systems Tagscan and li-

uqID [3, 16] are proposed to explore the possibility of

employing RFID and UWB signals for material identifica-

tion, achieving high accuracies. However, Tagscan needs an

expensive RFID reader (Impinj R420 reader is about 1500

USD) to identify target material, and LiuqID requires UWB

kits (the price is about 300 USD [16]) to perform material

identification by synchronizing the transmitter and receiver

with a wire connection. Compared to RFID and UWB

devices, we believe Wi-Fi is a more promising candidate

as it is ubiquitous and no any dedicated infrastructure is

needed. Therefore, in this work, we ask the question: can we
accurately identify the material type of a target with cheap
commodity Wi-Fi devices ? If this is feasible, as shown in

Fig. 1, we may able to employ just a smartphone in the

future to sense target material wherever Wi-Fi exists.

In this paper, we introduce WiMi, a commodity Wi-

Fi based contactless target material identification system.

To identify the target material, the key observation is that

different materials cause different amounts of phase and am-

plitude changes when wireless signal penetrates through [3].

However, different from the previous method which employs
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Figure 2: The raw CSI phase values vs. Phase difference

values between antennas.

Figure 3: The raw CSI amplitude values.

directional RFID transmissions for material identification,

commodity Wi-Fi employs omni-directional antennas and

thus multipath effect is more severe. Furthermore, both

signal phase and amplitude readings from commodity Wi-

Fi devices are very coarse and noisy, which make them not

directly suitable for fine-grained material identification. Two

main challenges need to be solved before we can perform

accurate material sensing with commodity Wi-Fi devices.

The first challenge is that the raw channel state infor-

mation (CSI) readings retrieved from Wi-Fi hardware are

coarse and noisy. We discuss about the CSI phase and

amplitude readings separately. Specifically, the raw phase

readings are corrupted by asynchronization between the

transceivers, hardware noise and multipath [17, 18]. As

shown in Fig. 2, the measured CSI phase changes at one

subcarrier (marked as grey dots) of a Wi-Fi channel from

the Wi-Fi card are very random across different packets.

For a same material, if we measure the phase readings

multiple times, the variations are large. To deal with this

challenge, we observe that the phase difference between the

CSI readings obtained from two closely-placed antennas are

much more stable and multiple antennas are widely available

at commodity Wi-Fi access points. Hence, we propose to

utilize a second antenna to extract CSI phase difference for

material identification. We further observe that among the

64 subcarriers of a 20MHz Wi-Fi channel, some subcarriers

may be greatly affected by multipath while the rest may

not due to frequency diversity [12]. Specifically, the phase

difference at a ‘clean’1 subcarrier across multiple subsequent

packets in the time domain are more stable and have a

smaller variance.

Besides the phase readings, the amplitude readings at

one subcarrier are also very noisy as shown in Fig. 3. To

extract the accurate CSI amplitudes, we observe that the

raw CSI amplitudes contain substantial outliers and impulse

noise. In particular, the impulse noises occur irregularly and

instantaneously, and are usually comparative to the useful

signals. To deal with this challenge, we first remove the

outliers by setting a signal fluctuation threshold. Then based

on the observation that the signals are highly-correlated

but the noises are weakly-correlated (or uncorrelated) at

different frequencies as shown in Sec. III-C, we can remove

the impulse noise and reconstruct the useful signals by

integrating the correlated signals. Even with the above steps,

there are still signal noise left, we thus employ the second

antenna again to obtain the amplitude ratio which is more

stable than the amplitude readings from each individual

antenna.

With the schemes described in the previous session, we

obtain clean and stable phase difference and amplitude ratio

information. The second challenge is how to utilize these

values to design a material feature which is unique for each

material and at the same time independent of target size. If

we are not able to obtain a unique feature independent of

the target size, then the same target with different sizes will

be identified as different materials. Inspired by the method

proposed in [3], we design a material feature which is only

related to the material type but not the target size with

just the phase difference and amplitude ratio information.

Different from [3], our proposed feature works with multi-

antenna system which is common for 802.11n/ac Wi-Fi APs.

We implement our prototype with commodity Wi-Fi de-

vices equipped with multiple antennas, and evaluate the

system performance in three different indoor environments:

a library, a lab (office) and an empty hall corresponding to

high, medium and low multipath environments. Extensive

experiments demonstrate that WiMi is able to identify 10

commonly seen liquid materials at higher than 95% average

accuracy in all the three environments.

Contributions: The main contributions are as follows:

• To our best knowledge, WiMi is the first Wi-Fi-based

material identification system hosted on commodity

Wi-Fi devices. WiMi employs the CSI phase difference

and amplitude ratio to obtain the unique material
feature independent of the target size for material

identification.

• We propose multiple signal processing schemes to

remove the noise to improve the material identification

accuracy.

1Here ‘clean’ means the subcarrier is not affected by multipath
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• We propose a material feature working with multi-

antenna Wi-Fi hardware to achieve fine-grained mate-

rial identification.

• We design and implement WiMi on commodity Wi-

Fi devices. Extensive experiments demonstrate the ef-

fectiveness and robustness of WiMi. WiMi is able to

differentiate very similar items such as Pepsi and Coke

at higher than 90% accuracy.

II. PRELIMINARY

In this section, we first briefly introduce the background

information. Then we present the key challenges.

A. Channel State Information

802.11 Wi-Fi physical layer employs OFDM scheme to

transmit data across orthogonal subcarriers [19]. For each re-

ceived packet, we can extract the Channel State Information

(CSI) at each subcarrier, which represents the channel char-

acteristic of the communication link. The channel frequency

responses can be expressed as:

H = (H (f1) , H (f2) · · ·H (fK)) , (1)

where H (fk) is the channel frequency response for

subcarrier k, and K is the number of subcarriers.

H (fk) = ‖H (fk)‖ ej·� H(fk) is represented by the ampli-

tude ‖H (fk)‖ and the phase � H (fk). The CSI measure-

ments at K = 30 subcarriers can be exported from the COTS

Intel 5300 Wi-Fi card with a publicly available tool [20].

B. Phase and Amplitude Change When A Wi-Fi Signal
Penetrates Through The Target

The CSI phase change is the difference between two

phase readings, which are measured before and after a target

appears at the LoS link. The wavelengths of the Wi-Fi signal

are different in different materials. Thus, as Fig.4 shows,

with a same transmission distance in the target, the phase

changes will be different when the signal penetrates through

different target materials of the same size. Let φtar and φfree
be the phase readings when there is a target and when there

is no target, the phase change Δφ can now be calculated as:

Δφ = φtar − φfree
=

[
2π · (L−D)

λfree
+ 2π · D

λtar
− 2π · L

λfree

]
= D · 2π

(
1

λtar
− 1

λfree

)
, (2)

where λtar and λfree are the wavelengths in the target and in

the air, respectively. L is the distance between the transmitter

and the receiver and D is the path length inside the target.

We define βtar = 2π
λtar

and βfree = 2π
λfree

as the signal

phase constant in the target and in the air, respectively. Then,

Equation (2) can be simplified as:

Δφ = D (βtar − βfree) (3)

D

Target

RxTx

D

TargetTargetTarget

RxTx

L

Figure 4: The brief illustration for a signal travels through

target.

The CSI amplitude change is the difference between

the two amplitude readings measured before and after a

target appears at the LoS link. For different target materials,

the amplitude changes are also different. Generally, the

amplitude has an e−α attenuation over a unit prorogation

distance inside the target, where α is the attenuation constant

related to the target material. We define the measured signal

amplitudes before and after the target appears on the RF link

as Afree and Atar, we can obtain the RSS change (ratio) in

dB as:

ΔR = 20× log
Atar

Afree

= 20× log
Ase

−αfree(L−D)e−αtarD

Ase−αfreeL

= 20× log e−D(αtar−αfree), (4)

where As denotes the amplitude of the original transmitted

signal. αtar and αfree represent the signal attenuation

constants in the target and in the air, respectively.

C. Challenges and Verifications

In this part, we discuss the three challenges we need to

tackle before our method can work.

1) Unstable Phase Values: Accurate phase readings are

critical to our material identification method. Unlike RFID

devices [3] which can provide fine-grained phase readings,

the phase information retrieved from the commodity Wi-Fi

devices are very unstable because of the non-synchronization

between transceivers, hardware noise, and rich multipath in

the indoor environment. To explore the distribution of raw

phase measurements, we conduct an experiment in a lab

office environment with one transmitter and one receiver

spaced at a distance of one meter. As shown in Fig. 2, the

raw phases are randomly distributed from 0 to 2π. Hence,

we need to carefully process the raw phase readings before

then can be employed for material sensing.

2) Noisy Amplitude Values: WiMi leverages the CSI

amplitude information to establish the relationship with

the propagation path distance, as shown in Equation (4).

Thus, an accurate amplitude reading is also important in

our proposed scheme. In real deployment setups, there exist

substantial outliers and impulse noise in the CSI amplitude
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Figure 5: System workflow of WiMi.

measurements. As shown in Fig. 3, the outliers exceed the

reasonable fluctuation region. The impulse noises appear at

random time points and their amplitudes are comparable to

the useful signals. If we do not remove these outliers and

impulse noise, the material identification performance will

be greatly affected.

3) Target Size Dependency: Different target materials

cause different signal phase and amplitude changes. How-

ever, different target sizes also cause different amounts of

phase and amplitude changes. Thus, we can not directly

employ the phase and amplitude readings for material i-

dentification but need to find a new parameter which is

uniquely related to the target material and at the same time,

independent of the target size for material identification.

III. SYSTEM DESIGN

WiMi is a device-free material identification system built

on commodity Wi-Fi devices. It only uses a transmitter for

sending signals and a receiver for receiving signals. As a

target appears at the LoS RF link between the transmitter and

receiver, the CSI phase and amplitude will change, and we

utilize these changes to design a material feature uniquely

related to each material type and independent of target size

to identify different materials.

A. System Overview

Now, we present the key components of WiMi followed

by a summary of the system workflow as shown in Fig. 5.

• Data Collection Module: When there is no target (i.e.,

W/O target) between the transceiver pair, WiMi extracts

a set of phase and amplitude readings from the mea-

sured CSI as the baseline data. Then WiMi captures

another set of data when the target appears at the LoS

link between the transceiver pair.

• CSI Pre-Processing Module: To calibrate the unstable

CSI phase values, WiMi first uses two receiver antennas

to remove the hardware noise and then eliminates

the multipath effects by selecting ‘good’ subcarriers.

For the CSI amplitude values, WiMi first rejects the

outliers and then addresses the impulse noise. Further,

we employ the second antenna again to obtain the

stable amplitude ratio. Finally, the processed phase

difference and amplitude ratio information are fed into

the material identification module.

• Material Identification Module: After the above two

steps, we use the processed phase difference and ampli-

tude ratio readings to design a unique material feature,

which is only determined by the target material and

independent of the target size. The target material will

then be identified through the classification algorithm

employed.

B. CSI Phase Calibration

As discussed in [18, 21], we know that the raw phase

readings reported at the Wi-Fi NICs are corrupted by asyn-

chronization between transceivers and hardware noise, such

as the Packet Boundary Delay (PBD), Sampling Frequen-

cy Offset (SFO) and Carrier Frequency Offset (CFO). To

address these phase errors, we calibrate the phase values

with a second antenna which is widely available at access

points (APs) nowadays. The details are as follows.

The measured phase for the k-th subcarrier on the i-th
antenna φ̃k,i can be expressed by:

φ̃k,i = φk,i + k (λb + λs) + β + Z (5)

where λb is the PBD, λs is the SFO, β is the CFO, and

Z is measurement noise, respectively. To deal with this

problem, the key observation is that the commodity Wi-

Fi devices are equipped with more than one antenna, and

these antennas on the same board share the same sampling

and oscillator clock, which means that they suffers from

the same sampling frequency offset, carrier frequency offset

and packet boundary delay [17, 22]. Thus, we can obtain

the phase difference Δφ̃k between two receiving antennas

as follows:

Δφ̃k = Δφk +ΔZ (6)

where Δφk is the theoretical phase difference, and ΔZ is

the noise difference between two antennas, which follows a

Gaussian distribution, which can be removed by averaging it

over a time window. The results are shown in Fig. 2 and we

can clearly see that the phase difference values of the one

subcarrier (marked as red dots) are now aggregated in a rel-

atively smaller area, ranging around 18 degrees. However, it

is still has a relatively large variance of the phase difference
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Figure 6: Phase difference variance for each subcarrier.

due to the multipath in indoor environments, which cannot

be directly employed for target material identification.

Hence, to address this problem, our insight is that different

subcarriers are affected differently by multipath. Specifically,

we find that the phase differences at those subcarriers

affected less by multipath are more stable and have smaller

variances. Therefore, our goal is to select the subcarrier(s)

with smaller variance across packets. In particular, the

variance for the k-th subcarrier across M continuous CSI

packets is calculated by the following equation:

σ2
k =

1

M

M∑
m=1

(
Δφ̃k (m)− 1

M
·

M∑
m=1

Δφ̃k (m)

)2

. (7)

The variances at different subcarriers are illustrated in Fig-

ure 6. We can find P ‘good’ subcarriers which have the

smallest phase difference variance. If we set P = 4, subcar-

rier 5, 20, 23, 24 are selected for material identification.

C. CSI Amplitude Denoising

As shown in Sec. II-C, the impulse noise occur irreg-

ularly and instantaneously, and the amplitudes are usually

comparative to the useful signals. To eliminate the impact

of the noise, we propose a denoising method, which contains

two steps. The first step is the outlier removal. We first

calculate the mean value μA and standard deviation σA
of the measured CSI amplitudes. Then we preserve the

data samples whose amplitude values are within the region

[μA − 3σA, μA + 3σA], and filter out the outliers which are

outside of this region.

After this step, however, there still remain a lot of impulse

noise. To remove them, our key observation is that the

wavelet coefficients of the useful signals are often strongly

correlated in different scales (frequencies), while the wavelet

coefficients of the noises are weakly correlated or uncorrelat-

ed. Then by multiplying the wavelet coefficients of adjacent

scales, the original useful signals can be reconstructed

since they will be larger than the noise. We illustrate our

observation through the following proof. Assume that the

noise n(x) obeys Gaussian distribution [21] with a mean

value of 0 and a variance of σ2, we can get the correlation

of the noise:

Rn (u, v) = E [(n (u)n (v))] = σ2, (8)

where E denotes the expectation, u and v are different time

points. Based on the discrete wavelet transform (DWT) [23],

the power of wavelet transform noise can be given as:

‖Wln (x)‖22 =
∑
T

∑
T

n (u)n (v)ψl (x−u)ψl (x−v),
(9)

where l denotes the wavelet scale and T is the discrete time

number. Then we can obtain the expectation of ‖Wln (x)‖22:

E(‖Wln (x)‖22) =
∑
T

∑
T

σ2ψl (x−u)ψl (x−v) = ‖ψ‖22 σ2

l
,

(10)

where ψ is the wavelet function. From Equation(9) and (10),

we observe that ‖Wln (x)‖22 decreases when the frequency

(scale l) increases, which demonstrates that the noises are

weakly-correlated at different frequencies, and it is the

opposite of the general characteristic of useful signals. That

is to say, the useful signals are highly correlated at different

frequencies.

Thereafter, we reconstruct the useful signal by integrating

data from multiple frequencies. Consider a group of ampli-

tude values Ak = [ak (1) , · · · , ak (M)] calculated from the

CSI measurements at the selected k-th subcarrier, the corre-

sponding wavelet coefficients W l
k =

[
wl

k (1) , · · · , wl
k (M)

]
can be extracted by the DWT algorithm. Then the correlation

coefficients at scale l can be formulated as:

Corrlk =W l
kW

l+1
k . (11)

To normalize the equation, we first calculate the power of

the lth wavelet coefficients PW l
k =

∥∥W l
k

∥∥2
2

and the power

of the lth correlation coefficients PCorrlk =
∥∥Corrlk∥∥22.

Hence, the normalized correlation coefficients can be given

as:

NCorrlk = Corrlk

√
PW l

k

/
PCorrlk (12)

Then we compare the absolute difference values between

W l
k and NCorrlk, and the new wavelet coefficient of the

m-th sample is:

Nwl
k (m) =

{
wl

k (m) ,
∣∣wl

k (m)
∣∣ ≥ ∣∣NCorrlk (m)

∣∣
0,

∣∣wl
k (m)

∣∣ < ∣∣NCorrlk (m)
∣∣
(13)

Note that, if
∣∣wl

k (m)
∣∣ ≥ ∣∣NCorrlk (m)

∣∣, the coefficient

wl
k (m) will be substituted by 0, otherwise, wl

k (m) remains

unchanged. We repeat the aforementioned process until

PW l
k is less than or equals to the noise threshold at scale

l, the choice of the threshold is based on robust median

estimation [24].

After extracting the new wavelet coefficients at each scale,

we can use them to reconstruct the original signal amplitude

Ak by the inverse wavelet transform, which effectively
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(a) Median filter (b) Slide filter (c) Butterworth filter (d) Proposed denoising method 

Figure 7: Performance of CSI amplitude denoising. (a)-(c) show three general filter methods, (d) shows our proposed method.
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antenna.

removes the troublesome noises. As Fig. 7 shows, we apply

the median filter, slide filter, butterworth filter, and our

proposed method to eliminate the noise. It is clear that our

method has the best noise removal performance than the

other three traditional filters.

Furthermore, we find an interesting observation that the

ratio of amplitude between two antennas is more stable than

the amplitude of each antenna. As illustrated in Fig. 8, one

can see the ratio of amplitude has much smaller variance

than that of each individual antenna. The is because close-

by antennas experience similar multipath, so the division

operation not only removes the hardware noise but also

partially removes the variations caused by the environmental

multipath. Thus, we use the more stable amplitude ratio

information to identify target material.

D. Target Material Identification

After the pre-processing for the CSI phase and am-

plitude, we obtain clean and stable phase difference and

amplitude ratio for material identification. However, there

exists another challenge. The material identification feature

introduced in [3] does not work with commodity Wi-Fi

devices equipped with multiple antennas. This is because

the accurate absolute phase readings and amplitude read-

ings can be obtained from commodity RFID devices but

not from commodity Wi-Fi devices. For commodity Wi-Fi

devices, as discussed in the previous two subsections, we

can only obtain the stable and accurate phase difference

and amplitude ratio but not the stable absolute phase and

amplitude readings. Thus, we need to design a new material

identification feature for the commodity Wi-Fi device.

Now we consider a two-antenna AP communicates with

a single antenna Wi-Fi device. D1 and D2 respectively

represent the propagation distances inside the target for

antenna1 and antenna2. Based on Equation (2) and (4), we

can easily get the following equations for each individual

antenna:

Δφ̃1 = φ̃tar1 − φ̃free1 = D1 (βtar − βfree) (14)

ΔA1 =
Atar1

Afree1
= e−D1(αtar−αfree) (15)

and

Δφ̃2 = φ̃tar2 − φ̃free2 = D2 (βtar − βfree) (16)

ΔA2 =
Atar2

Afree2
= e−D2(αtar−αfree) (17)

Then, we calculate the phase difference and amplitude ratio

between the two antennas to obtain the following equations:

ΔΘ = Δφ̃1 −Δφ̃2 =
(
φ̃tar1 − φ̃tar2

)
−
(
φ̃free1 − φ̃free2

)
= (D1 −D2) (βtar − βfree)

(18)

and
ΔΨ = ΔA1

ΔA2
= Atar1

Atar2
· Afree2

Afree1

= e−(D1−D2)(αtar−αfree)
(19)

where we successfully convert unstable φ̃tar1−φ̃free1 and

φ̃tar2−φ̃free2 into stable φ̃tar1−φ̃tar2 and φ̃free1−φ̃free2.

The same effect also applies to amplitude processing. We

can now employ the processed stable phase difference and

amplitude ratio to build the material feature and the details

are introduced in the next section.

E. Addressing Target Size Issue

Besides the phase difference caused by target material,

different target sizes also bring in phase differences. Without

removing the target-size related phase difference, we are not

able to employ the phase change for material identification.
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Figure 10: Variances are different for each antenna combination.

Inspired by [3], we design a parameter Ω̄ which can be

calculated with just the amplitude ratio and phase changes.

This parameter Ω̄ is uniquely related to the target material

and is independent of the target size. Based on Equation (18)

and (19), we get the following equation:

D1 −D2 =
ΔΘ+ 2γπ

βtar − βfree =
− lnΔΨ

αfree − αtar
, (20)

where γ is an integer. Then, we can obtain the following

equation with parameter Ω̄ calculated as:

Ω̄ =
− lnΔΨ

ΔΘ+ 2γπ
=
αfree − αtar

βtar − βfree , (21)

Note that ΔΘ is the phase difference and ΔΨ is amplitude

ratio we can directly calculate with measurements from the

commodity Wi-Fi device. βfree and αfree are constants.

For a given material, the values of βtar and αtar are also

constants. As for γ, it is an integer value related to the signal

propagation distance inside the target. If the container’s size

changes in a small range, γ does not change. As an integer

value, γ can be accurately estimated with the coarse CSI

amplitude readings.

In Equation (21), We can see that, for the obtained pa-

rameter Ω̄, D1 and D2 disappear which means the parameter

is independent of the target size. The signal phase constant

βtar and attenuation constant αtar are decided by the target

material. Thus, Ω̄ is also uniquely related to the target

material type. What is more important, Ω̄ can be obtained as

shown in Equation (21) with just phase difference (ΔΘ) and

amplitude ratio (ΔΨ) which can be measured and directly at

commodity Wi-Fi devices. We name Ω̄ material feature and

employ this unique feature to identify a target’s material.

Further, we conduct a group of benchmark experiments

to demonstrate the availability of the material feature Ω
in the office environment. The test liquids are ‘Saltwater’,

‘Vinegar’, ‘Pepsi’,‘Milk’ and ‘Pure water’. The results in

Fig.9 illustrates that the material features Ω can be taken

as an effective reference to identify the target material.

Finally, we put the extracted feature values into the material

database. Then, when identifying a test material, WiMi

collects the phase and amplitude change measurements, and

incorporates the material database and the SVM classifier to

identify the target material.

F. Selecting Antenna Pairs

Although WiMi can use two receiver antennas to perform

material identification, current commercial Wi-Fi devices are

equipped with more than two antennas. Given the receiver

has p antennas, we can extract
p(p−1)

2 phase differences

and amplitude ratio values. As Fig. 10 presents, one can

clearly see the variances of phase difference values and

amplitude ratio values are different for different combina-

tions of antennas. Hence, we can improve the stability of

material identification by selecting the appropriate antenna

combination.

IV. IMPLEMENTATION

Hardware setup: We build a prototype of WiMi using a

commodity wireless router as transmitter and a laptop with

an Intel 5300 Wi-Fi NIC with three antennas as receiver.

The router works in 802.11n AP mode at 5 GHz frequency

band. The laptop has a 3.6 GHz CPU (Intel i7-4790) and 8

GB memory. The laptop is employed to receive CSI mea-

surements every 10 ms and run our material identification

algorithm.

Experimental environments: To evaluate the material

identification performance of WiMi, we conduct experiments

in three typical indoor environments: an empty hall, a

laboratory, and a library. Note that the three environments

represent low, medium, and high multipath environments,

respectively. In each environment, the laptop is placed 2 m

from the router, and the tested target is placed at the LoS RF

link. Note that we first extract a set of phase and amplitude

values as the baseline data when the empty plastic beaker

is placed at the LoS RF link, and then we pour the same

amount of each tested liquid into the empty plastic beaker

to measure another set of data. We wait a few seconds

to let tested liquid become stable before each test. The
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Figure 14: Identification performance of

the amplitude denoising method.
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Figure 15: Identification performance

for 10 liquids.

plastic beaker has a diameter of 14.3 cm and a height of 23

cm. Fig. 11 shows the deployment setup in three different

environments.

Tested targets: To evaluate the material identification

performance of WiMi, we test 10 different liquids including

‘Vinegar’, ‘Honey’, ‘Soy’, ‘Milk’, ‘Pepsi’, ‘Liquor’, ‘Pure

water’, ‘Oil’, ‘Coke’, and ‘Sweet water’.

V. PERFORMANCE EVALUATION

A. Microbenchmark

We conduct two benchmark experiments to validate the

practicability and effectiveness of the pre-processing meth-

ods for the CSI phase and amplitude.

Verification of phase calibration: We conduct experi-

ments in the library environment to test the phase calibration

scheme. For each tested material, we collect CSI readings

for 10 seconds, and repeat this process 20 times.

Fig. 12 illustrates the phase distributions by using the

proposed calibration scheme. We can clearly see that the

raw phase values are randomly distributed from 0 to 2π.

Then after we remove the hardware interference with the

phase difference, the obtained new phase difference values

assemble to a small region (angular fluctuation is around

18 degrees). At last, we select the ‘good’ subcarriers whose

phase difference values are more stable and have a more

concentrated distribution. The angular fluctuation is further

decreased to 5 degrees.

Further, to verify the efficacy of the subcarrier selection

scheme, we randomly select 3 subcarriers (2, 7, 12) and

compare the material identification performance with the two

‘good’ subcarriers (23, 24)2. The performance comparison is

illustrated in Fig. 13. Since the phase values at the randomly

selected subcarriers have large variances, the two ‘good’

subcarriers achieve a much higher identification accuracy.

Furthermore, when we combine subcarrier 23 with 24,

the identification accuracy is further increased, higher than

applying only one of them. These results demonstrate the

effectiveness of our proposed subcarrier selection method.

Verification of amplitude denoising: To further verify

the impact of our two-antenna denoising method on target

material identification, we respectively use the raw ampli-

tude ratio values and the amplitude ratio values with both

the outliers and impulse noise removed to identify the target

material. The results are presented in Fig. 14 and it is

clear that the material identification performance with our

two-antenna denoising method is consistently better. These

results demonstrate the effectiveness of proposed denoising

method.

B. Overall Performance

We evaluate the material identification performance in the

lab environment. For each tested target, we repeat collecting

the measurements 20 times. Fig. 15 presents the identifi-

cation results for ten different liquids. WiMi achieves an

average accuracy of 96%. To evaluate WiMi’s identification

performance for the same type of liquid but with different

concentrations, we pour three different concentrations of

2In our test experiments, the default target material is milk.
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Figure 17: Identification performance

with varying distance between transmit-

ter and receiver.
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Figure 18: Identification performance

with varying number of packets.
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varying Container size.
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varying Container material.
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Figure 21: Performances for different

antenna combinations.

saline water (1.2g/100ml, 2.7g/100ml and 5.9g/100ml) into

the same plastic container. The identification results are

shown in Fig. 16 and we can see that WiMi can still achieve

higher than 95% accuracy.

The impact of distance between transmitter and
receiver: Different distances between the transmitter and

receiver would result in different material identification

accuracy, since the amount of multipath and diffraction

increase as the distance increases. As Fig. 17 shows, when

the distance increases from 1 m to 3 m at a step size of 0.5

m, the identification accuracy decreases from 98% to 87.3%.

We can thus conclude that the larger distance degrades the

system performance but WiMi can still achieve around 90%

accuracy when the transceiver pair is separated by 3 m.

The impact of packet number: We now evaluate WiMi’s

performance with different numbers of packets. As Fig. 18

illustrates, WiMi achieves an increasing material identifica-

tion accuracy when the packet number grows from 3 to

30. The reason is that the phase and amplitude errors are

reduced more by the two pre-processing schemes with a

larger number of packets. However, it does not mean the

performance will keep improving with more packets. We

can see that WiMi achieves a similar accuracy when the

number of packets is increased from 20 to 30. Note that it

takes more time to receive more number of packets. Thus,

in our implementation, WiMi employs 20 packets for target

material sensing.

The impact of container’s size: To verify the impact

of different container sizes, we run a set of experiments by

pouring test liquids into five glass beakers with different

sizes. We pour the liquid until the same height of 23 cm.

The diameters of the five beakers are 14.3 cm, 11 cm, 8.9

cm, 6.1 cm, and 3.2 cm, referred as Size 1, Size 2, Size

3, Size 4, and Size 5, respectively. As Fig. 19 shows, the

identification accuracy fluctuates in the range of 95% to 91%
when the diameter is decreased from 14.3 cm to 8.9 cm.

When the container’s diameter is further decreased to 3.2

cm, the identification accuracy is decreased obviously. We

believe this is because when the diameter is smaller than

the wavelength (6cm) of the signal, diffraction degrades the

identification accuracy.

The impact of different material containers: We evalu-

ate the impact of container material on WiMi’s performance.

We pour the test liquids into a plastic beaker and a glass

beaker respectively, both of which have a same diameter of

14.3 cm and a height of 23 cm. The results are shown in

Fig. 20. We can clearly see that the identification accuracies

are similar for the same liquid with different containers.

This is because we collect a set of base data before the

liquid is poured into the container and then collect another

set of data when the target liquid is poured in. By taking

the difference, we actually remove the effect of container so

the container material has little effect on the identification

performance as long as the container is not too small. Note

that, when the container is metallic or covered with a foil

paper, the RF signal will be essentially reflected back rather

than penetrating through the target, causing our system to

stop working.

The impact of Antenna combinations: As shown in

Fig. 21, one can see that different antenna combinations
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have slightly different material identification accuracies. The

combination of antenna 1 and antenna 2 achieves the best

performance than the other two pairs. We believe this is be-

cause different antenna pairs experience different multipath

and environmental noise, which result in different degree

of stability of phase difference and amplitude ratio. Thus,

we could select appropriate antenna pair to achieve better

material identification performance when there are more than

two antennas.

VI. DISCUSSION

The current version of WiMi has several limitations. First,

we cannot identify the target’s material if it is comprised of

two or more materials. In this work, we mainly focus on

single-material target. Second, WiMi requires the target to be

placed between the transmitter and receiver with LoS signal

penetrating through the target. Thus, WiMi can only identify

one target at a time with one WiFi transmitter-receiver

pair. However, we believe there will be more and more

devices equipped with a Wi-Fi module in our surrounding

environment in the future, all of which will be connected to

the Wi-Fi AP. Hence, more Wi-Fi links can be available

to be employed for material sensing. Third, our current

system can only identify the material type of a static liquid.

When the target is moving or the liquid is flowing, it will

cause extra changes of signal phase and amplitude and it

is then challenging to perform material identification. In the

future, we would like to dig deep in this interesting direction

and employ deep learning techniques to address the fluid

dynamics for sensing.

VII. RELATED WORK

Material Identification: Existing literatures on material

identification are mainly divided into two groups. The first

group is the RF-based methods, such as the RSA system

[25], which uses millimeter wave signal to identify a target’s

surface material. RadarCat [26] touches target and leverages

60 GHz signal to identify the material. Although they have a

high material identification accuracy, both of them require to

use high frequency millimeter wave signal and the sensing

range is very small. Also, recently, TagScan system [3]

utilizes the RFID signal for accurate target material iden-

tification owing to the very stable absolute phase and RSS

readings from RFID device, which is not available on com-

modity Wi-Fi devices. Another latest work LiquID [16] uses

UWB device to perform material identification achieving a

high accuracy by connecting a wire between the transmitter

and receiver. Compared to UWB and RFID devices, Wi-

Fi is more ubiquitous and already widely deployed in our

surrounding environment.

The second group is based on dedicated devices, such as

Radar [4], X-Ray [5], CT/MRI [6], These systems require

dedicated hardware to emit high frequency and high band-

width signals. These equipments are usually not only huge in

size but is also expensive despite these systems can achieve

a high material identification accuracy. Systems further em-

ploy visible light camera [9, 27] to identify target material,

and they only work with good-lighting conditions and can

not identify targets inside a non-transparent container. On

the other hand, WiMi is built on commodity Wi-Fi device

which can identify the the material type of targets inside

a non-transparent container and has no requirement on the

lighting conditions.

Phase Calibration and Amplitude Denoising: The is-

sues of unstable phase and noisy amplitude are unavoidable

with commodity Wi-Fi hardware. For phase calibration,

PinLoc [21] and PhaseU [18] use a linear transform to

remove the phase offsets caused by hardware. Unlike these

approaches, WiMi addresses the random phase problem

based on the observation that the random phase jumps are the

same on closely-spaced antennas on a board. Furthermore,

we identify ‘good’ subcarriers which are less contaminated

by the multipath in indoor environment for material iden-

tification. For amplitude calibration, current works such as

CARM and Wikey [13, 18] use PCA technology to remove

the environmental noise effectively for single antenna, which

is still not stable enough for our system. This is because

we need more stable amplitude information to perform fine-

grained material sensing. WiMi first uses a threshold to

filter out the outliers and utilizes the fact that noises are

uncorrelated in different frequencies to remove the impulse

noise effectively. Then WiMi applies more stable amplitude

ratio between closely-spaced antennas to perform material

identification.

VIII. CONCLUSION

We present WiMi, the first COTS Wi-Fi based material

identification system, which works with the noisy CSI

readings. WiMi proposes novel CSI phase calibration and

CSI amplitude denoising methods to obtain clean and stable

phase difference and amplitude ratio information. WiMi

leverages the phase difference and amplitude ratio to design

a new material feature, which is only related to the target ma-

terial and independent of target size. Extensive experimental

results demonstrate the effectiveness and high accuracy of

the proposed system. We believe the proposed CSI denoising

methods can be applied to benefit other sensing applications.
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jikian, “B-scan and en-face spectral-domain optical coherence tomog-
raphy imaging for the diagnosis and followup of acute retinal pigment
epitheliitis,” Case reports in medicine, vol. 2013, 2013.

[8] S. Nanda, S. Manna, A. K. Sadhu, A. Konar, and D. Bhattacharya,
“Real-time surface material identification using infrared sensor to
control speed of an arduino based car like mobile robot,” in Third
International Conference on Computer, Communication, Control and
Information Technology, 2015, pp. 1–6.
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