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mmpFinger: Talk to Smart Devices with Finger
Tapping Gesture

Xuan Wang, Xuerong Zhao, Chao Feng, Dingyi Fang, Xiaojiang Chen

Abstract—Contact-free finger gesture recognition unlocks plenty of applications in smart Human-Computer Interaction (HCI).
However, existing solutions either require users to wear sensors on their fingers or use continuously monitored cameras, raising
concerns regarding user comfort and privacy. In this paper, we propose mmFinger, an accurate and robust mmWave-based finger
gesture recognition system that can extend the range of available custom commands. The core idea is that mmFinger leverages the
finger tapping pattern as a basic gesture and encodes different number combinations of the basic gesture like Morse code. To enable
reliable recognition across different locations and for various users, we carefully design a robust feature Dop-profile to effectively
characterize finger movements. Furthermore, by leveraging the multi-views provided by multiple antennas of radar, we develop an
adaptive weighted feature fusion network to enhance the system’s robustness. Finally, we devise a novel sequence prediction network
to enable the system to recognize new gestures without retraining. Comprehensive experiments demonstrate that mmFinger can
achieve an average recognition accuracy of 92% for 36 predefined gestures and 88% for 5 new user-defined commands, and is robust

against finger location and user diversity.

Index Terms—Finger gesture recognition; mmWave radar; HCI.

1 INTRODUCTION

Contact-free Human-Computer Interaction (HCI) is becom-
ing increasingly popular and enables plentiful appealing ap-
plications [1]-[4]. For example, one can unlock a phone and
access information without touching the screen when the
fingers are wet, oily, or dirty, or wearing gloves. Similarly,
in a hospital, motor neuron disease (MND) patients can
interact with computers and smart devices in their homes
by tapping their fingers. Furthermore, in supermarkets, cus-
tomers can purchase goods without contacting self-service
devices.

A natural solution for achieving contact-free interaction
is voice-based [4]. Although promising, it is not suitable
for quiet places and could raise privacy concerns in public
settings. In addition, such a solution is ill-suited to mutes.
Another option is to adopt gesture-based approaches [5],
[6]. By tracking and recognizing hand or finger gestures,
one can interact with the devices. Due to flexible and no
need for the users to make a sound or use voice commands,
gesture-based HCI schemes are more attractive.

Existing gesture recognition systems either rely on cam-
eras [7], [8] or wearable sensors [9]-[12]. While effective,
such solutions rely on ambient light conditions, incurring
privacy infringement, and causing uncomfortable to users.
To avoid these issues, recent advances have explored di-
verse wireless signals, e.g., WiFi [13], [14], RFID [15], [16],
acoustic [17] and mmWave [18], [19], for gesture sens-
ing. Although they have made great progress, there are
some limitations hindering their practical usage. First, these
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Fig. 1. Potential interaction applications of finger gesture recognition.

works only identify a limited number of pre-defined ges-
tures, which yet are not unified but different from system
to system and difficult to be remembered. Second, they are
susceptible to location changes and user changes. Once the
location changes, the performance significantly degrades.
Third, some systems employ large-scale hand movements
for interaction, which would incur information leak issues
as the content to express behind gestures such as interactive
mode, input messages or instructions is evident and easy to
be seen, stolen, and mimicked [19], [20].

Therefore, in this paper, we ask the following question:
Can we design an accurate, reliable, and privacy-preserving HCI
approach without being limited to pre-defined gestures? We pro-
pose an affirmative answer through mmFinger, a mmWave-
based finger gesture recognition system. We leverage finger
tapping (finger down and up once, like clicking the mouse)
as a basic element and encode all letters, numbers, and cus-
tom commands into finger gesture combinations consisting
of single and double taps. By recognizing the combination
of the basic tapping elements, mmFinger can identify not
only pre-defined gestures but also new gestures. With such
capability, one system can enable many potential interaction
applications as shown in Fig.
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Realizing such an idea into a practical system, we face
several technical challenges. The first challenge lies in weak
target reflection signal extraction. Due to the limited finger
movement and small reflection area of the finger, the sig-
nal variation induced by a finger gesture is minimal and
thus can easily be overwhelmed by stronger background
interference, making it difficult to accurately extract the
finger-reflected signal. The second challenge is the system
performance degradation caused by minor location varia-
tions between the finger and radar, as well as different user
typing habits. These factors can result in pattern variations
of the reflected signal for the same finger gesture, ultimately
leading to errors in recognition. This issue is particularly
pronounced for individuals with severe physical disabilities
who may have limited control over their finger movements.

The third challenge lies in scaling the recognition system
to new gestures for meeting users’ diverse needs. Exist-
ing methods mostly employ classification-based approaches
that categorize finger gestures into limited predefined
groups and assign them to specific letters or commands,
which requires regathering new samples and updating the
recognition model. Re-training model is computationally
intensive and impractical for terminal devices with limited
computing capabilities.

To overcome the above challenges, mmFinger proposes
a pipeline of signal processing schemes, including signal
refinement and spacial-temporal feature extraction, along
with a deep learning (DL) recognition model. First, to obtain
the weak signal reflected by the user’s finger, mmFinger
adopts a range-based location algorithm and a circle-fitting
algorithm to eliminate interference caused by surrounding
static and dynamic objects. Second, to reliably characterize
finger gestures, we design a more robust feature Dop-profile
which can reflect a consistent trajectory of the finger move-
ment, to minimize the impact of finger location variations
and user habits. Moreover, to further enhance recognition
robustness, we fully leverage the complementary informa-
tion provided by multiple antennas on mmWave radar to
characterize the spatial variation of finger movement. To
solve the third challenge, our basic idea is to use dif-
ferent finger-tapping patterns to match with self-defined
commands or existing number combinations like Morse
or ASCII codes and transform the finger-tapping pattern
recognition task into a sequence prediction task. By doing
so, we can significantly reduce the overhead of integrating
new finger gestures into the recognition model to adapt to
other applications.

We implement our system with a commodity mmWave
device and evaluate the system performance in a typi-
cal indoor environment. Extensive experiments show that
mmPFinger can recognize 36 finger gestures and 5 user-
defined commands with an average accuracy of 92.61% and
88%, respectively. The results also demonstrate that mmFin-
ger is robust against input location and user diversity.

The main contributions can be summarized as follows.

e mmFinger is a mmWave-based finger gesture recog-
nition system to enable interaction with humans and
devices just using an index finger. It can generalize
across users and locations, and easily scale to new
finger gestures without retraining effort.
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e We utilize unique finger-tapping patterns to match
self-defined or standard codes like Morse and ASCII,
enabling the system to identify new gestures with-
out additional training or learning. We also develop
a feature extraction technique that combines Doppler
profiles and spatial-temporal analysis with a multi-
antenna fusion approach on mmWave radar, capturing
intricate finger motion details.

e Extensive real-world experiments demonstrate the ef-
fectiveness and robustness of mmFinger.

2 RELATED WORK

In this section, we discuss the related studies about gesture
recognition and mmWave radar-based sensing tasks.

2.1 Contact-free finger gesture recognition

Contact-free finger gesture recognition has garnered signif-
icant attention from both academia and industry due to
its potential for a wide range of real-life HCI applications.
Existing research in this field can be categorized into three
main approaches. The first approach involves wearable de-
vices such as smart gloves or wristbands equipped with
sensors [9], [10]. These devices are capable of capturing
hand and finger movements and orientation. While effec-
tive, this solution can be inconvenient for users and may
cause discomfort. Alternatively, the second approach uti-
lizes vision-based methods [7]], [8]. This method eliminates
the need for users to wear or hold any devices and relies on
cameras or depth sensors to capture images or depth maps
of the hand and fingers. Computer vision techniques are
then applied to analyze the captured data and recognize the
gestures. However, this approach is susceptible to variations
in ambient light conditions and raises concerns regarding
privacy infringement. The third approach is based on wire-
less signals, such as ultrasonic [17], [21], WiFi [13], [14],
[22], radar [18], [19], [23]. Sensors emit signals that measure
the time it takes for the waves to bounce back after being
reflected by the hand or fingers. The captured data can be
utilized to estimate hand and finger positions and activities.
Soli [23] presents a mmWave sensor to showcase fine hand
gesture interaction. WiKey [22] leverages CSI-waveform to
recognize 37 keys in a fixed keyboard. However, these works
are limited to identifying a predefined set of gestures and
vulnerable to change of relative position between finger
and transceiver, making it challenging to extend recognition
systems to new gestures and impeding their practical de-
ployment in real-life scenarios. In Taprint [11], users need to
move their fingers and click on the corresponding position
of the virtual numeric keyboard, which is difficult to use for
MND patients (they can only move their fingers within a
centimeter). In contrast, mmFinger enables interaction with
humans and devices just using an index finger in a contact-
less way. The main advantage of the proposed system is that
it can easily scale to new finger gestures without retraining
effort.

2.2 mmWave radar-based sensing applications

Millimeter wave radar has been widely used in wireless
sensing applications [24]-[28] due to its wide bandwidth
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and high resolution. [29] and [30] use point cloud informa-
tion extracted by commercial mmWave radar to recognize
gestures. m3Track [31] realized a mmWave-based multi-
user 3D posture tracking system. mHomeGes [29] proposed
a real-time mmWave arm gesture recognition system for
practical smart home-usage. [32]enables a virtual keyboard
by detecting small changes in finger position.

In addition, the fine-grained sensing ability of mmWave
radar can be used in many applications to monitor hu-
man health. [33] enables a non-contact high-definition heart
monitoring, [34], [35] enable RF vital sign sensing under
ambulant daily living conditions through capturing the
sophisticated correlation between RF signal pattern, move-
ment power, and vital signs. [36], [37]extract extremely
weak reflected signals from mechanical equipment to mea-
sure micrometer-level vibrations. Unlike previous works,
mmFinger aims to develop a gesture recognition system
based on Morse code using mmWave signals, which is es-
pecially beneficial for individuals with physical disabilities
in human-computer interaction.

3 MOTIVATION AND BACKGROUND

In this section, we first describe the motivation. Then, we
describe the data processing of Frequency Modulated Con-
tinuous (FMCW) mmWave radar for further analysis.

3.1 Applications for finger gesture recognition.

By accurately predicting and recognizing finger gestures,
numerous captivating applications become feasible. For ex-
ample,

Providing communication service for ALS (Amy-
otrophic Lateral Sclerosis) patients: ALS, also known as
Motor Neuron Disease (MND), is a progressive neurological
disorder primarily affecting motor neurons. According to
statistics, the global MND patients are over 500,000, with
12,000 of them in the United States [38], [39]. Such patients
typically suffer from muscle weakness and speech difficul-
ties and only retain slight finger and eye movements. Thus,
traditional communication approaches, such as speech and
gestures, are ineffective for MND patients. Previous efforts
have involved the development of eye-tracking systems to
aid computer interaction and communication for these pa-
tients [40]. Yet, vision-based eye-tracking systems are often
intricate and costly, and sustained eye movement can be
fatiguing. More importantly, such a solution causes privacy
invasion. Instead, we use RF signals to provide a non-
invasive solution to facilitate communication for MND pa-
tients by identifying single-finger movements. In addition,
since MND patients still have normal brain functions, they
thus can remember some finger-tapping interaction rules
to talk with smart devices and people. Although bringing
certain memory burdens, they can communicate with the
outside world in a non-intrusive, contact-free, and privacy-
preserve manner, which is more important for them.

Supporting finger-level interactions: In a smart home,
one can control devices in smart homes through minor, sim-
ple gestures like adjusting volume, changing channels, or
managing lighting. In addition, we can manipulate virtual
objects in virtual and augmented reality.
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Fig. 2. FMCW radar data processing.

3.2 Basics of mmWave Radar

The mmWave radar emits Frequency Modulated Continu-
ous (FMCW) signals that are reflected and received by the
radar upon hitting a target. At the receiver, the received
signal is typically multiplied by the complex conjugate of
the transmitted signal to produce an intermediate frequency
(IF) signal that is easier to sample, as the step (a) in Fig.
Mathematically, the IF signal can be represented as follows,

Srp(t) = Ae=i2m{or(tutr () =32 T* 1)} (1)
where 7(t) = 2ot R is the distance from target to
radar, v is the target velocity, ¢ is the propagation time. p
is the slope of the FMCW signal. Next, we detail two com-
monly used features, i.e., distance, and Doppler velocity.

Distance estimation: When the reflecting object is sta-
tionary, the sampled intermediate frequency (IF) signal
maintains a constant frequency of f = W. Therefore,
a fast Fourier transform (FFT) can be performed on a single
chirp to estimate of the range R by identifying the peak of
the frequency spectrum. This procedure is called range-FFT
(from step (b) to (c) in Fig. . The range-FFT transforms
the data from the time domain to the frequency domain,
enabling the detection of targets at different ranges. The
range resolution is inversely proportional to the bandwidth
of the frequency sweep.

Doppler velocity estimation: Small human motions rel-
ative to radar can cause Doppler frequency shifts (DFS),
resulting in range-FFTs corresponding to each chirp with
peaks in the same range bin but with differing phases. By
computing the phase difference w between two consecutive
chirps, we can estimate the Doppler velocity as v = ;:i ,
where T, represents the time interval between two chirps.
This can be accomplished by further performing an FFT on
each range bin of the Range-FFT, which is called a Doppler-
FFT (from step (c) to (d) in Fig. [2).

4 SYSTEM OVERVIEW

mmFinger is an accurate and reliable finger gesture recog-
nition system built on a commodity mmWave radar. The
system structure is illustrated in Fig. (3 It comprises three
major modules: data collection and pre-processing module,
feature extraction module, and gesture prediction module.
Data Collection and Pre-processing Module: mmFin-
ger first uses a commodity mmWave radar to collect raw
measurements when each user performs finger gestures.
Then, to obtain weak target reflections induced by a finger,
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mmFinger adopts a circle-fitting algorithm and a range-
based location algorithm to eliminate interference caused
by surrounding static and dynamic objects.

Spacial-Temporal Feature Extraction Module: Since
minor location variations between the finger and radar
could result in significant differences in the reflected signal,
mmFinger designs a location-agnostic feature, i.e., Dop-
profile, to reliably characterize the finger gestures. In addi-
tion, to fully leverage the advantage of the multiple viewing
angles provided by multiple transmitter and receiver anten-
nas, mmFinger designs a multi-antennas adaptive combi-
nation scheme to adaptively generate weights for each an-
tenna of each training sample and then fuses them, greatly
reducing the effects of noise and interference and obtaining
more accurate recognition results. To capture the implicit
temporal characteristic of the fused features, mmFinger
designs an LSTM-based feature extraction module.

Gesture Prediction Module: Then, the obtained tempo-
ral representation is fed into the sequence prediction mod-
ule, which maps the representation to a character sequence
using the CTC loss function. By doing so, mmFinger can
make predictions without requiring gesture segmentation,
thus avoiding recognition errors caused by sub-gesture seg-
mentation errors. This approach also enables the recognition
of custom gestures without requiring specific training data
for each gesture, which makes the system more versatile and
flexible for a wide range of users and applications.

5 SYSTEM DESIGN

In this section, we elaborate on the system design of mmFin-
ger, which is developed to recognize finger gestures using
mmWave radar. mmFinger comprises three major modules:
the signal pre-processing module, the dynamic feature ex-
traction module, and the gesture prediction module.

5.1 mmWave data preprocessing

Due to the small reflection area and movement of the finger,
the reflected signals are weak and easily overwhelmed by
ambient reflections from other larger objects. This poses a
significant challenge for detecting the signals of interest. To
address this issue, we adopt a series of preprocessing steps
to extract the weak target reflection signals generated by
finger movements.

Generally, the received signal comprises not only the
target signal reflected by the finger but also signals from
other static and dynamic objects. We here refer to the re-
flected signals from static objects and dynamic non-target
signals as static clutter and dynamic clutter, respectively.
Thus, the received intermediate frequency (IF) signal S can
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be expressed as the sum of the target dynamic signal S,
dynamic clutter Sq, static clutter Sg, and noise:

S :Atej-27rf(ATta(t)) + E Akej'27rfk(ATdk(t))
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k
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where DC' denotes the Direct Constant (DC) component.

To remove the static and dynamic clutters induced by
distant objects (e.g., a wall and a walking person) relative
to the human target, we adopt a range-based location algo-
rithm. The basic idea is that the sources of interference fall
in different range bins compared to the finger. Therefore, we
first perform a range Fast Fourier Transform (FFT) to the IF
signal and then employ a classical CFAR algorithm [41] to
the range spectrum for extracting the distance information
between the finger and radar antenna. By doing so, we
can eliminate reflections from surrounding static objects and
interference from people who may occasionally pass by.

In practice, there could exist static clutters reflection from
the table on which the finger is tapped. It means that the
table can be detected within the same range-bin as the finger
reflection. If the static component is not suppressed, the
sensing resolution and accuracy will degrade [36]. Static
interferences act similarly to DC components, shifting the IQ
sampling point distribution on the IQ diagram away from
the origin so that it no longer centers on the origin. This
displacement diminishes the observable amplitude of signal
phase evolution over time. Therefore, we can correct the
estimated deviation of the phase series so that the center of
the circle returns to the origin to eliminate the phase offset.
The specific operation is, first, to find the distribution of the
current discrete points on the complex plane and perform a
circle fitting algorithm [36] on these points, compensate for
the offset based on the fitted circle, and finally obtain new
discrete points by subtracting it from the received complex
signal to remove the static component eliminate the static
component caused by table reflection.

5.2 Characterize the movement of finger

So far, we have extracted the valid signal of the finger
movement. Thus, our next goal is to robustly characterize
the movement of the finger. In this section, we first analyze
why phase information can not be directly used for the
modeling of target movements. Then, we describe how to
devise a feature, i.e.,, Dop-profile, to represent the finger
movement, which is robust to the finger locations and
performer’s identity.

5.2.1 Phase variation

The movement of the finger in the up-down direction is
typically small (less than 1 cm). However, the range reso-
lution of a mmWave radar with 4 GHz bandwidth is 3.75
cm, which is not sufficient to capture such a small variation
in range. Fortunately, the small wavelength of mmWave
signals (about 4 mm) allows us to utilize phase information
to characterize this movement.
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Fig. 4. The phase variation at three locations and with three users.
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Fig. 5. Impact analysis of finger location.

As mentioned in Sec. B2} the phase change of the IF
signal corresponds to the path length change caused by
target movement, we thus can express the phase variation
as follows:

2R(t)  4n(Ro+v-1)
A A

P(t) = 2m - @)

The equation in Eq. B| shows that the phase change
is capable of capturing finger movements. However, it is
also vulnerable to slight changes in location or orientation
between the finger and radar. These changes can result in
significant phase variations in the received signal, making it
challenging to accurately detect and recognize gestures. Fur-
thermore, the thickness of the user’s fingers, as well as the
magnitude and speed of the performed gestures, can also
impact the phase of the received signal. The high sensitivity
of the phase to minor changes in gesture motion presents a
challenge for achieving accurate gesture recognition.

To investigate the impact of the relative position of
the radar and finger on phase measurements, we conduct
benchmark experiments, as shown in Fig. We fix a
mmWave radar on a desktop at a height of 25 cm and ask
users to perform the letter “A” containing four sub-gestures
at three marked locations (Loc 1 - Loc 3), respectively.
We then extracted phase variations from the target range
bin. Fig. [@{b) displays the phase variations caused by the
gesture at different locations, and we can see that the phase
patterns are different at different locations. Fig. [(c) shows
the phase variation patterns of different users at Loc 1, and
we can also see that the patterns vary significantly with the
performer’s identity. These results demonstrate that phase
variation is highly dependent on the location and user. Thus,
we cannot use phase information directly to characterize
finger gestures accurately.

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

(b) Different locations.

(c) Different users.

5.2.2 Dop-profile extraction

To mitigate the problem of phase instability, we propose a
feature, i.e., Dop-profile, to represent the finger movement.
Different from phase patterns, the Dop-profile feature is
more responsive to the movements of the target’s gestures
while simultaneously being less susceptible to minor posi-
tional alterations. We now detail how to obtain the Dop-
profile feature.

In the radar sensing model illustrated in Fig. [fa),
wherein the transmitter and receiver are co-located and
stationary, the movement of the finger is analogous to the
relative motion of the transmitter and receiver. If the target
is moving radially with respect to the radar, then the values
of R and phase ¢ will vary with time. By calculating the
derivative of phase with time, we can successfully eliminate
the impact of the factor Ry:

dgp airlfeded) yn, o 20 A
T T @ x T @
where 2¢ is the Doppler frequency shift (DFS) induced by
the target. We denote it as fp, which can also be expressed
as the difference between the frequency of the transmitted
signals fs and received signals f,:

fo=fi—fo= 2= 20O
v; denotes the real velocity of the target, and 6 denotes the
angle formed between the direction of movement and the
Line of Sight (LoS) stretching from the transceiver to the
target. The radial velocity v determines the magnitude and
direction of DFS caused by the target. For the same gesture,
although they were performed at different locations or by different
users, the moving direction and trajectory of the finger are the
same. The moving direction and velocity derived from DFS
are more consistent across different users, locations, and
distances.

We take the starting gesture “up” (Fig. [p(b)) and ending
gesture “down” (Fig. Ekc)) as examples for analysis. In
Fig. P[b), we observe that when the finger executes the
“up” gesture at Loc 1, fp reaches its maximum value.
This is because the finger moves towards the radar and
cos(f1) = —1(6, 180°). The “up” gesture has a state
sequence of static-accelerate-slow down-static, causing the
DFS to first rise from 0 and then decline to 0. Alternatively,
when the gesture is performed at Loc 2, which is located at

a distance of L from Loc 1, cos(f2) = ———2——. When
(ra+L?)

w

Cc
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Loc 2 is positioned 50° away (i.e., 6 dB bandwidth) to the
left of Loc 1, resulting in cos(fz) = —0.6428, the Doppler
velocity vy at Loc 2 is equal to 0.6428v;. Fig. @a) and (b)
show the Doppler velocity of two different locations. vy is
significantly less than the v; and its profile is blurred to be
recognized. By changing the observation angle, as depicted
in Fig. [fd), we observed that the magnitude profile of
maximum Doppler velocities corresponding to each frame
still exhibited a distinct pattern for all the sub-gestures as
Fig.[6[c), we call it Dop-profile.

Therefore, we extract Dop-profile to characterize the
movement of the finger in mmFinger. The specific pro-
cessing procedure is as follows. Initially, a Range-FFT is
performed separately on [N sampling points of each chirp
within reshaped datacube C. Following this, background
interference cancellation is executed, and a Doppler-FFT is
performed on the M points (all M chirps) of each range bin
within the matrix obtained in the previous step, resulting
in the Range-Doppler matrix X. We accumulate the energy
across all M points within each range bin and select the
largest range bin 4. Similarly, the energy of all N points
within each Doppler bin is accumulated, and the largest
Doppler bin j is chosen. We extract the energy of x; ; for
the current frame g. These steps are repeated for all frames,
generating an energy value z{ ; for each frame to form the
Dop profile Dp.

To display the validity of the proposed feature Dop-
profile, in addition to the benchmark experiment in Fig.
we also conduct an experiment that varied the distance
between the finger and the radar by lifting the radar to
three different heights (25 cm, 45 cm, 65 cm). Fig. [7] (a)-
(c) show the captured Dop-profiles from finger movements
at three distinct locations, by three different users, and at
three distances, respectively. Their Dop-profiles have a uni-
fied pattern, demonstrating that the proposed Dop-profile
feature is capable of effectively characterizing finger move-
ments while minimizing the impact of location, individual
differences, and distances.

5.3 Spacial-Temporal Feature Extraction Module

This module aims to further capture complex spacial and
temporal features that reflect finger movement over time.
The spacial-temporal features are fed into the prediction
module to achieve robust gesture recognition.

5.3.1 Multi-antenna Based Spatial Feature Extraction

To further robustly represent the finger gestures, we intro-
duce a muli-antenna combination scheme to enrich the Dop-
profile features. Generally, a commodity mmWave radars
consist of multiple transmit antennas (Tx) and multiple
receive antennas (Rx). In our work, we utilize the mmWave
chip TI IWR1843, whose antenna layout is displayed in
Fig.[|8] This chip contains four Rx antennas with an element
spacing of dl = %, resulting in phase differences between
signals arriving at these antennas. For simplicity, we use
the signal transmitted from Tx1 and arrived at Rx1 as the
reference, so the phase difference between Rx2 - Rx4 and
the reference are w, 2w, and 3w, respectively (w = 2”7"”).
Since Tx2 is 2\ apart from Tx1, the phase difference of the
signal sent by Tx2 when it arrives at the Rx antennas are
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4w, 5w, 6w, and Tw. Similarly, as shown in Fig. b), the
phase difference of the signal sent by Tx3 received by Rx1-
Rx4 can be equivalent to Rx9-Rx12. The virtual antenna array
can provide multi-view for observing finger movements, leading
to differences in the received signal variations. This is due to
two reasons. Firstly, the length of the virtual antenna array
is larger than the width of a single finger, and secondly, the
surface of a finger is not as smooth and reflective as that of
a metal plate, which can cause variations in the scattering
of the signal. To verify the diversity of radar antennas
when performing gestures with a finger, we ask a user to
perform gesture “A”. Fig.[f|shows the Dop-profiles extracted
by all virtual antennas. We can see that different antennas
have different Dop-profiles. This provides us an opportunity
to employ antenna diversity for achieving robust gesture
recognition.

However, a challenge we faced is that how to effec-
tively incorporate the readings from the virtual antenna
array. One straightforward method is to directly add all
antennas’ Dop-profiles. However, such a solution can not
obtain optimal performance since some antennas may have
negative effects, causing accuracy degradation. To tackle
this problem, we propose MAF (Multi-antennas fusion), an
adaptive weighting approach to make the network automat-
ically assign weights for each antenna, and then incorporate
information from them to extract optimal gesture features.
Specifically, this adaptive feature fusion method comprises
three operators: extraction, weight adaptive selection, and
fusion. The extraction operator is first applied to eliminate
gesture-irrelevant features for input Dop-profiles from all
antennas. The selection operator combines information from
various channels to obtain a comprehensive representation
that facilitates weight selection. The fusion operator aggre-
gates feature maps of all channels based on the selected
weights for subsequent temporal feature extraction. The
proposed adaptive feature fusion module significantly en-
hances the quality of feature extraction and improves recog-
nition robustness by fusing the representations of multi-
channel inputs. Fig. [10| shows the structure of the module
and the specific details of each module are described below.

Extraction: To eliminate the impact of gesture-
independent features, we employ a weight shared Con-
volutional Neural Network (CNN) block which takes as
input the extracted Dop-profiles from all 12 antennas. The
CNN block contains several layers, including convolutional
layers (Conv), batch normalization layers (BN), ReLU layers,
dropout layers, and dense layers. By sharing weights across
the input channels, the CNN block can effectively capture
the gesture-specific features while filtering out the irrelevant
ones.

Selection: After obtaining the High-dimensional repre-
sentation for each antenna, we fuse results from multiple
branches (twelve in our system) via an element-wise sum-
mation:

V=v+uve+- - +touk, (6)

then we added a Global Average Pooling layer Fy; to effec-
tively summarizes the most important features and reduce
the spatial dimensions of the feature. The resulting feature
fusion result is then fed as input to a fully connected (FC)
layer Ft. to generate Z = z1, 23, , 2k
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A softmax across channels is used to adaptively select
the information from different antennas. Specifically, a soft-
max operator is applied on the channel dimension (antenna
dimension) to generate weight vectors,

g = {a}wai’...
where a3, = %, kj;is tht.e Jen element of the'input
2z, and the sum is taken over the j;;, element of all k input.
>~ @, = 1. The output of the softmax function is a vector of
the same dimension as the input, with each element being a
value between 0 and 1 that represents the probability of the
corresponding class.

Fusion: The result of the module is a linear combination
of k channels (vi, v, - ,v;) each weighted by the corre-

@)

7ai}7
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(b) Different users.

(c) Different distances.

sponding coefficient vector (o, ag, - -
expressed as,

, ), which can be

F (8)

(IR D R e R R U
where F' is vector with the same dimension as vg. The
coefficients «a, determines the contribution of each vectors
v}, to the resulting linear combination.

5.3.2 LSTM Based Temporal Feature Extraction

We apply Bidirectional Long Short-Term Memory (BiL-
STM [42]) to model the temporal dependencies between the
different elements of the input sequence. The choice of BiL-
STM is based on several considerations. Firstly, compared to
traditional RNNSs, the gating mechanism in BiLSTM helps
mitigate the issue of vanishing gradients when handling
long sequences. Secondly, BILSTM's sensitivity to temporal
dynamics allows it to effectively capture patterns in time
series data, making it advantageous for our prediction tasks.
While Transformers are widely used for sequence data,
BiLSTMs are computationally more efficient for shorter se-
quences, making them better suited for real-time applica-
tions. Additionally, BILSTM offers lower model complexity
and is easier to debug and optimize, whereas Transformers
require a larger dataset to achieve optimal performance.
Given the time-sequential nature of gesture data, BILSTM is
a more appropriate choice for our needs. By analyzing both
the forward and backward sequences, BILSTM can capture
the velocity and acceleration information. By using these
rich, complex features as input to the prediction module, the
model can learn to distinguish between different gestures
based on their unique features.
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Fig. 11. Summary of the finger tapping patterns.

5.4 Gesture Recognition Module

To predict the label of a finger gesture, a straightforward
solution is to use a classic classifier network [§] to map
temporal features to a specific category. However, directly
performing multi-classification tasks by treating each char-
acter as a separate category can be a cumbersome process,
especially when more characters or user-defined commands
are needed for recognition. This is because there is no
corresponding category for the new character in the original
network, we have to retain the network when new charac-
ters are added. This approach can be impractical for users
and lacks user-friendliness in practical applications.

To cope with this challenge, our basic idea is to use
different finger-tapping patterns to match with self-defined
commands or existing number combinations like Morse or
ASCII codes and transform the finger-tapping pattern recog-
nition task into a sequence prediction task. In our study, we
choose Morse code-like gesture patterns as an example to
illustrate our fundamental concepts. Note that this strategy
can be adapted and integrated into other current language
systems, users thus can randomly group the basic finger-
tapping gesture to customize their interactive semantics
based on their preferences.

Specifically, we employ a one-finger input method and
assign predefined tapping patterns to represent characters
referring to Morse code encoding rules, where the “down-
up” gesture represents “dot” and “down-up-down-up” rep-
resents “dash”. To separate individual characters, we begin
with an “up” gesture and ends with a “down” gesture for
each respective character. The combination of these gestures
in a sequence is used to encode the letters “A-Z” and digits
“0-9”, as illustrated in Fig.

To enable the prediction of new finger-tapping gesture
sequences without retraining the network, we treat each
character as a sequence of gestures using numbers “0-3”
to represent four sub-gestures: starting (up), single tapping
(down-up), double tapping (down-up-down-up), and end-
ing (down). For example, “A” and “B” are represented as
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“0123” and “021113”, respectively.

Based on this proposed strategy, we use Connection-
ist Temporal Classification (CTC) [43] as a probabilistic
approach to translate temporal features into character se-
quences to recognize new gestures at zero manpower cost
and zero learning curve. CTC loss function can quantify the
dissimilarity between the input temporal sequence and the
actual output after neural network processing. It introduces
a blank symbol to the output space and considers all possi-
ble alignments between the input and output sequences, in-
cluding those with repeated symbols and different lengths.
By summing over all possible alignments and then remov-
ing the blank symbols to obtain the final predicted output
sequence. This approach allows for end-to-end translation
of characters without pre-segmenting individual gestures
and connecting them into a complete sequence of character
gestures. In mathematical notation, the CTC loss function
The loss function is defined as:

L=-) lnp(y|=z) )

yey

Here, y denotes the target sequence, ¥ denotes the set of
all possible target sequences, x denotes the input temporal
representation, and p(y|x) denotes the probability of the
target sequence y given the input sequence x. The log-
arithmic form avoids numerical underflow and improves
computation stability while making the loss function more
interpretable as it measures the negative log-likelihood of
the correct target sequence given the input sequence.

The process of minimizing the loss function is typi-
cally implemented using optimization algorithms such as
gradient descent. In our system, we adopt the Adam op-
timizer [44], which adaptively adjusts the learning rate
for each parameter and dynamically adjusts the size of
the learning rate during the training process. This helps
improve the efficiency and accuracy of the system.

Finally, we create a LUT to map gesture sequences to
tapping patterns and recognize finger gestures by predicting
a number sequence consisting of several “1” and “2”, a “0”
and a “3”. By doing so, our system can break the bottleneck
that requires collecting samples of new gestures to retrain
the model.

6 IMPLEMENTATION

mmWave radar platform and parameters setting. For data
collection, we utilize a commercial mmWave radar sensor
chip (TI-IWR1843BOOST [45]) with three transmitting an-
tennas and four receiving antennas. To capture the sub-
tle finger movements, the radar is configured to transmit
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Fig. 12. Experimental deployments.

TABLE 1
Summary of Datasets Collection

Samples Description

Dstaset 1 26 Letters x 15 Instances x 10 User = 3900 Samples

Dataset 2 10 Digits x 20 Instances x 10 User = 2000 Samples

Dataset 3 5 Commands x 20 Instances x 10 User = 1000 Samples
Dataset 4 6 Distances x 5 Instances x 26 Letters x 2 User = 780 Samples
Dataset 5 6 Positions x 5 Instances x 26 Letters x 2 User = 1560 Samples
Dataset 6 3 Env x 10 Instances x 26 Letters x 2 User = 1560 Samples
Dataset 7 3 Dep x 10 Instances x 26 Letters x 2 User = 1560 Samples

FMCW signals with a bandwidth of 3.985 GHz and a slope
of 69.9 MHz/us. It sends 160 frames each time, and each
frame contains 255 x 3 chirps (three transmitting antennas
work in a time-division multiplexing manner). In addition,
we set sampling points per chirp to 100, and the receiver is
set to a sampling rate of 2 MHz. The sensor is attached to
a tripod to maintain a fixed position and orientation during
data collection.

Post-processing platform. The data obtained from the
TI radar is preprocessed on a PC (Intel i5-10400F CPU
@ 2.90 GHz, 32 GB memory). Then, extracted Dop-profile
features are stored and fed into the server equipped with
NVIDIA GeForce RTX 2080Ti GPU for deep learning based
recognition.

Deployment and data collection. We summarize the
collected datasets in Table [[l The Dataset 1-3 are collected
under the default deployment as Fig. in a conference
room. The height of radar h = 25 cm and finger typing at
Location 1. We invite ten volunteers (4 female and 6 male) to
perform finger tapping gestures and our study is approved
by the Institutional Review Board (IRB). The specific deploy-
ments of Dataset 4-7 are described in corresponding section.

Hyperparameters Declaration and Sample Selection
Strategy. In our training process, we employ 100 iterations
(epochs) to train the network using the “adam” optimizer
with an initial learning rate of 0.01. We set the batch size
to 16, that is, each iteration involves 16 samples. We set
dropout to 0.25 to reduce the number of parameters and
avoid overfitting.

Evaluation metrics: We apply character recognition ac-
curacy as an evaluation metric. The recognition accuracy is
the percentage of correctly predicted characters to the total
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Fig. 13. Confusion matrix of 36 finger gestures across 10 participants.
TABLE 2
Comparison of feature extraction methods and machine learning
models.
Test Average Params
Feature Methods & 5
Num. Accuracy  (x10°)
Dop-profile of
~OP°p CNN+LSTM 89.14% 3.8
single antenna
Doppler-Time of
2 OPP CNN+LSTM  88.04% 90.32
single antenna
Dop-profiles of
3 Pp CNN+LSTM  89.68% 52.2
multi antennas
Dop-profiles of
4 Pp ResNet+LSTM  90.38% 74.19
multi antennas
Dop-profile of 0
5 . Atten-TsNN 90.85% 52.38
multi antennas
Dop-profile of
6 PP MAF+LSTM  93.61% 41
multi antennas
predicted characters, which can be described as:
A Num. of correctly predicted character
ceuracy =
Num. of all test character

7 EVALUATION

7.1 Overall Performance

We evaluate the overall performance of mmFinger on
Dataset 1 and Dataset 2. Specifically, we select 80% of
4300 samples from 10 users for training and the remaining
samples for testing. During model training, the training
set is divided into five parts, and a four-fold rotation is
employed, wherein four parts are used for training and one
part for validation, following the five-fold cross-validation
method. The model with the highest validation performance
is ultimately retained. Fig[I3] shows the confusion matrix
of 36 finger gestures across 10 participants, where the dark
green color indicates higher recognition accuracy while the
white color means (close to) zero prediction. We can see
that mmPFinger achieves an average recognition accuracy
of 92.61%. The results demonstrate that mmFinger can
effectively recognize finger gestures.
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7.2 Micro-benchmarks

To verify the effectiveness of our extracted feature Dop-
profile and machine learning model, we conduct two mi-
crobenchmarks on Dataset 1, and the results are shown in
Table 2] Specifically,

Verification of the feature extraction method: To verify
the effectiveness of our proposed feature extraction method,
we compared our extracted Dop-profile of a single antenna,
commonly used Doppler-Time feature, and Dop-profile of
multi antennas by inputting them into the same feature
extraction network (ResNet+LSTM) as test 1-3.

From the comparison of recognition results, we can see
that while the accuracy of dop-profle and Doppler-time
features shows minimal variance, the number of parameters
is significantly reduced by 30 times. This reduction occurs
because that our dop-profile features are one-dimensional
data, allowing the convolution kernel to operate along
a single dimension. In contrast, the convolution of two-
dimensional Doppler-time data requires operations across
both dimensions. Moreover, integration of Dop-profiles
from multiple antennas yields superior results compared
to using a single antenna’s Dop-profile. This improvement
arises from our dynamic multi-antenna fusion approach,
which leverages antenna diversity to obtain more robust
features.

Verification of the machine learning model: To verify
the effectiveness of the proposed machine learning model,
as shown in Test 3-6, we used the extracted Dop-profiles
features of multiple antennas as network input and com-
pared the following four different models: CNN+LSTM,
ResNet+LSTM, attention-based network Atten-TsNN [46],
and our proposed MAF+LSTM. The results show that our
proposed method MAF+LSTM outperforms the other meth-
ods, demonstrating the effectiveness of our proposed Multi-
antennas fusion method weight fusion. In addition, the
superior performance of ResNet over traditional CNNs lies
in its incorporation of skip or shortcut connections, which
ensure that vital features are preserved and propagated
even in deep networks by directly copying the input to the
output.

7.3 Robustness of mmFinger in the field

To validate the effectiveness of the proposed feature
Dop-profile and the proposed multi-antennas combination
scheme, we respectively collect different test data under dif-
ferent factors ( distances, locations, users, environments, and
radar deployments) to test the performance of the model
trained by the data in Sec. Note that when evaluating
each specific factor, we ensure the other factors are the same.

Impact of tapping speed: To assess the impact of tapping
speed on recognition accuracy, we invited the same user to
perform gestures for all 26 letters at the same distance. We
define the tapping speed as the duration of a single tap and
denote it as slow (about 0.9 s), normal (about 0.65 s), and fast
(about 0.4 s). For instance, the letter “A” with 4 sub-gestures
and intervals lasts approximately 2.5 s, 3.5 s, and 4.5 s under
three execution speeds. Testing the model trained on Sec. 7.1
with the newly collected dataset, the results are displayed in
Fig.|14] A slight decrease in recognition accuracy is observed
with increased speed, with an average accuracy of 86%. In
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practical applications, a medium speed satisfies the majority
of users’ daily needs.

Impact of the interval between sub-gestures: To assess
the impact of sub-gesture intervals (pause time) on recog-
nition accuracy, we manipulated existing data by cropping
and compensating to ensure intervals of 0.1 s,0.2s,and 0.3 s,
constructing a dataset. The reason for not re-collecting data
is the difficulty in accurately controlling intervals. For exam-
ple, assuming a required 0.2 s interval for each sub-gesture,
we handle samples as follows: if the interval between sub-
gestures is less than 0.2 s, we replicate ground noise samples
to ensure a 0.2 s interval between sub-gestures for the
letter ”A.” Conversely, if the interval exceeds 0.2 s, we trim
the excess sampling points and concatenate them to the
end of the valid sample to maintain a 0.2-second interval
between sub-gestures. Testing the model trained on Section
7.1 with the constructed dataset, the results are displayed in
Fig. [15] Recognition accuracy is extremely low with a 0.1 s
interval because the interval is too small to correctly learn
the segmentation of each sub-gesture, leading to increased
segmentation errors. When the interval exceeds 0.2 s, recog-
nition accuracy improves to 92%. A 0.2 s interval aligns with
the daily needs of the majority of users.

Impact of the interval between characters: To evaluate
the effect of character intervals on continuous character
recognition performance, we generated 240 samples of 6
words with consistent character intervals (0.2's, 0.3 s,0.4 s,
0.5 s). This involved adding or removing ground noise
sampling points before and after each character, following a
similar procedure to the prior experiment. We test the model
trained in Section 7.1 on the constructed samples and the
results are illustrated in Fig. |16} We can see that an average
accuracy is higher than 93% when the character interval
exceeds 0.3s. Greater interval between characters improves
the precision of segmentation, resulting in higher accuracy
when predicting the final characters and words.

Impact of the distance between radar and hand: As
the distance between the radar and the hand increases,
the received reflected signal strength decreases and more
interference surrounds the signal, making it difficult to iden-
tify significant patterns for recognition. In this section, we
investigate the impact of distance on recognition accuracy
by changing the height of the radar to 25 cm, 35 cm, 45 cm,
1 m, 1.5 m, and 2 m respectively. We use Dataset 4 to
test the trained model with data from each user at each dis-
tance. The results in Fig.|17|show that the average accuracy
achieved by a single antenna remains above 84.24% across
two radar heights of 35 cm and 45 cm, only decreasing by
2% compared with 25 cm, indicating that the Dop-profile
is robust to changes in distance. Furthermore, the multi-
antenna approach provides an additional average accuracy
improvement of 6% and the recognition accuracy of mmFin-
ger surpasses 88% within a 1-meter range, demonstrating
that the proposed multi-antenna combination module can
further enhance robustness across distances. However, be-
yond this distance, particularly at 2 meters, there is a notable
decline in recognition accuracy. This decline primarily arises
due to the increased distance, resulting in a considerably
weakened reflected signal from the small finger area that
becomes challenging to accurately extract as the distance
grows. Despite efforts to eliminate strong reflection signals
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Fig. 20. Impact of environment.

from other objects, such as the human body and table, the
extraction of the correct dynamic signal remains challenging
due to the weakened nature of the target signal.

Impact of finger location: The location changes of the
finger result in variations of the reflection path, causing
variations in the reflected signal. In this section, we assess
the performance of mmFinger when participants perform
gestures at different locations relative to the radar. Specifi-
cally, we use Dataset 5, which includes data collected at six
different locations (Locations 2, 3, 4, 5, and 6 are situated
9cm, 9 cm, 4 cm, 7 cm, and 7 cm away from Location
1, respectively), to test the trained model. The results are
presented in Fig.|18] It is observed that the average accuracy
of a single antenna is 84.57% across different locations,
indicating the robustness of the Dop-profile to changes in lo-
cation. Furthermore, the multi-antenna approach improves
the average accuracy to 90.44%, demonstrating that the
proposed multi-antenna combination module can further
enhance robustness across locations.

Impact of user diversity: To account for the fact that
users have different hand shapes and varying habits of

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

Fig. 21. Impact of surroundings.

Fig. 22. Impact of radar deployment.

performing gestures, such as the time interval of sub-
gestures and finger movement amplitude, the reflection
signals generated can differ. In order to assess the ability
of mmPFinger to perform gesture recognition across users,
we train a recognition model on data from 9 participants in
Dataset 1, with data from the remaining participant used for
testing. As shown in Fig.[19] the average accuracy of 86.38%
across 5 users is not significantly decreased compared with
the result in Sec. (86.54%), indicating the robustness
of the extracted Dop-profile to user diversity. Additionally,
the multi-antenna approach provides an additional accuracy
improvement of 3 — 5%, thus demonstrating the effective-
ness of our multi-antenna combination approach.

Impact of environment: The varying multipath condi-
tions in different environments can result in different mixed
signals being received by the radar receiver, which in turn
can affect the recognition accuracy. To examine this impact,
we conduct experiments in three different environments: a
conference room (little multipath), office (moderate multi-
path), and home (severe multipath) to form Dataset 6. We
then test the trained model using samples from each of
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Fig. 23. Recognition accuracy in the interference scene.

the three environments. The results, presented in Fig. 20
indicate a slight decrease in accuracy (only approximately
2 — 3% for multi-antennas) when the environment changes,
indicating mmFinger is robust to environment changes.

Impact of interference from surrounding dynamic and
static objects: In practical scenarios, the received signal can
be influenced by both the target and surrounding objects.
Therefore, in this section, we investigate the impact of
surrounding objects’ activities on the target’'s movement
detection performance. Firstly, we ask a person to walk
around the target at distances of 0.3 m, 0.6 m, and 1.2 m
while the target performed letters “A-E” ten times. We
test the trained model using the extracted Dop-profiles.
The results are depicted in Fig. We observe that the
interference caused by surrounding people’s movements
was minimal (about 2%) across all distances. This is because
the mmWave radar can distinguish at least two objects 4 cm
apart, allowing us to filter out the interference signals based
on range and angle. Our results demonstrate that mmPFinger
can achieve reliable recognition in practical scenarios where
the person causing interference is usually more than 30 cm
away from the target user.

Next, we assess the impact of interference from nearby
objects (e.g., those at similar distances to a human hand). In
the first experiment, we positioned a 2 cm x 6 cm wooden
block at multiple sequential locations, each maintaining
a constant distance from the radar, equivalent to that of
the hand. These positions were incrementally spaced at
10-degree intervals from the hand, moving outward. The
results, depicted in Fig. 23} reveal that the recognition accu-
racy remained above 91% across different object positions
(at the same distance as the hand). This indicates that
the circle-fitting algorithm effectively mitigates interference
from static objects, even when those objects are positioned
at the same range as the hand relative to the radar.

In the second experiment, the target user’s finger exe-
cuted gestures directly below the radar, while a volunteer
placed one hand in various predetermined positions and
tapped their index finger at random intervals. The results,
shown in Fig. display that recognition accuracy de-
creased as the dynamic interference (tapping finger) moved
closer to the target hand. To counteract this type of inter-
ference, we first separated the signals of the interference
object and the target hand by angle. The accuracy dropped
sharply when the angle between the interference object
and the hand was less than 15 degrees, due to the radar’s
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angular resolution limit of 15 degrees. Within this limit, the
radar struggles to distinguish between two objects at similar
ranges in the same range bin, leading to a reduction in
accuracy. When the angle exceeded 15 degrees, the radar
system could effectively separate the signals, mitigating the
interference and achieving high recognition accuracy.
Impact of radar deployment: To assess the impact of
radar deployment on recognition performance, we conduct
additional experiments where the radar is placed in front
of and to the left of the hand. The data collected from
these scenarios are denoted as Dataset 7 and are used
to test the trained model in Sec. respectively. The re-
sults are presented in Fig. We observe that the “front”
deployment yielded the lowest accuracy, followed by the
“left” deployment, while the default “top” deployment
provides the highest accuracy. This is because when the
radar is placed in front of the finger, the reflection area is
the smallest and the movement direction of the finger is
nearly perpendicular to the path change direction, resulting
in a small DFS. Although the reflection area of the “left”
deployment is larger than that of the “top” deployment, the
DFS remained small since the finger’s movement direction
is almost perpendicular to the path change direction, as the
“front” deployment. In contrast, the “top” deployment has
the largest reflection area and the highest mapping value of
finger movement velocity in the path direction, resulting in
a larger DFS. Therefore, we select the deployment shown
in Fig. |12(a) as the default for our evaluation. Further
exploration is required to achieve accurate recognition un-
der other deployment scenarios to be suitable for various
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applications.

7.4 Performance on unseen finger gesture

To assess the scalability of mmFinger to new gestures, we
train a recognition model using Dataset 1 and test it with
Dataset 2 and Dataset 3. The results presented in Fig.
show an average recognition accuracy of 90.5% and 89%
for ten digits and five user-defined commands that do not
duplicate existing gesture codes, respectively. These results
demonstrate that the system can accurately recognize new
gestures without requiring retraining of the network, thus
minimizing additional costs.

To evaluate the feasibility of mmFinger for text input, we
collect five different user-defined abbreviated sentences. The
sentences are: S1 = “I want water,” S2 = “Have a good day,”
S3 = “Need doctor,” S4 = “I like it,” and S5 = “Thank you.”
We ask ten users to perform each sentence twenty times
and ensure a certain interval between each character. The
resulting data is used to test the trained model. As shown
in Fig. 24(c), mmFinger achieves an average recognition
accuracy of 91.5%, indicating that mmFinger is effective to
recognize sentences without pre-segmenting.

7.5 Performance on prediction delay

It is noted that our system processes data offline, with
gesture data input into a model trained on a local server
for prediction. Our default configuration consists of an
IWR1843 and DCA1000, along with an Intel i5-10400F CPU
for signal processing and an RTX 2080 Ti GPU for model
prediction. Under this setup, the data transmission frame
rate is 30 frames per second, resulting in a latency of 33
ms. The signal processing latency is 81 ms, and the model
recognition latency is 57 ms. The average total response time
required for a test sample with mmFinger is 171 ms. The re-
sponse time may vary depending on device configurations.

8 DISCUSSION

Although our study has yielded promising results, there is
still considerable room for future work and opportunities
for further improvement. We discuss a few key points here.

The quality of training samples. Improving the quality
of training samples is essential for achieving higher recog-
nition accuracy and enhancing the network’s generalization
performance. One effective strategy is to ensure that the
training dataset includes a diverse range of input condi-
tions, encompassing different user characteristics, sensor
positions, and distances from the mmWave radar. A rig-
orous data screening process should also be employed to
eliminate irrelevant or inaccurate data, which can lead to
incorrect learning by the network. Additionally, applying
data augmentation techniques such as random rotations,
translations, and scaling can increase the variability of the
training data, further boosting the generalization capability
of our network.

Limited sensing range. The current version of mmFin-
ger only works on a limited sensing range due to the rela-
tively small reflection area of the human finger. To overcome
this challenge, novel signal processing techniques need to
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be explored to enhance the Signal-to-Noise Ratio (SNR) of
the sensing signal. This may require the development of ad-
vanced weak signal extraction and enhancement schemes to
improve the sensitivity of the mmWave radar and increase
the detection range.

Limited interaction velocity. Compared to gesture or
speech-based systems that typically require 172 seconds to
complete a single letter, our system may not exhibit a signifi-
cant advantage in terms of throughput and efficiency, partic-
ularly when inputting lengthy commands, which could be
perceived as cumbersome and time-consuming. However,
the merit of our system lies in its ability to offer more
interactive options when individuals experience difficulty
or inconvenience in speaking or using their arms or when
wearing gloves. Our rhythm-based interactive design allows
users the flexibility to set custom finger-tapping patterns for
input and maps them to unique functionalities of the desired
commands. This differs from traditional classification-based
HCI systems, which are constrained by limited and fixed
pre-defined patterns of the system.

9 CONCLUSION

This paper presents mmFinger, an accurate and robust
finger gesture recognition system with a single mmWave
radar. By carefully designing a robust Dop-profile feature
and a multi-antenna adaptive combination scheme to char-
acterize finger gestures’ movement, mmFinger is robust to
the changes of locations and users. In addition, mmFinger
realizes an end-to-end recognition system by encoding one
gesture into a sub-gesture sequence, allowing the recogni-
tion of user-defined new gestures without requiring specific
data for training. Extensive experiments demonstrate that
mmPFinger achieves reliable, robust, and scalable finger ges-
ture recognition.
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